a: Xét ΔAHC vuôg tại H và ΔAHB vuông tại H có
AB=AC
AH chung
DO đo: ΔAHC=ΔAHB
b: Xét tứ giác BMCN có
H là trung điểm của BC
H là trung điểm của MN
DO đó: BMCN là hình bình hành
Suy ra: BN//AC
c: Xét ΔAQH vuông tạiQ và ΔAMH vuông tại M có
AH chung
\(\widehat{QAH}=\widehat{MAH}\)
Do đó: ΔAQH=ΔAMH
Suy ra: HQ=HM
=>HQ=1/2MN
=>ΔMQN vuông tại Q
Xét ΔBQH vuông tạiQ và ΔBNH vuông tại N có
BH chung
HQ=HN
Do đó; ΔBQH=ΔBNH
Suy ra: BQ=BN
=>BH là đường trung trực của QN