Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Hải Linh
Xem chi tiết
Akai Haruma
30 tháng 4 2021 lúc 1:26

Lời giải:

Vì $MA,MB$ là tiếp tuyến của $(O)$ nên:

$MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Tứ giác $MAOB$ có tổng 2 góc đối: $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$ nên là tứ giác nội tiếp (đpcm).

Vì $OC=OD=R$ nên tam giác $OCD$ cân tại $O$

Do đó đường trung tuyến $OI$ đồng thời là đường cao

$\Rightarrow \widehat{OIM}=90^0$

Tứ giác $MIOB$ có tổng 2 góc đối $\widehat{OIM}+\widehat{OBM}=90^0+90^0=180^0$ nên là tứ giác nội tiếp (đpcm)

Akai Haruma
30 tháng 4 2021 lúc 1:31

Hình vẽ:

undefined

Nguyễn Trung Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 11:14

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{CAM}\) là góc tạo bởi dây cung CA và tiếp tuyến AM

Do đó: \(\widehat{ADC}=\widehat{CAM}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MDA}=\widehat{MAC}\)

Xét ΔMDA và ΔMAC có 

\(\widehat{MDA}=\widehat{MAC}\)(cmt)

\(\widehat{AMD}\) là góc chung

Do đó: ΔMDA∼ΔMAC(g-g)

\(\dfrac{MD}{MA}=\dfrac{MA}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(MA^2=MC\cdot MD\)(đpcm)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM, ta được:

\(MA^2=MH\cdot MO\)(2)

Từ (1) và (2) suy ra \(MH\cdot MO=MC\cdot MD\)(đpcm)

Page One
10 tháng 4 2022 lúc 22:14

c) để chứng minh EC là tiếp tuyến:

chứng minh tứ giác OECH nội tiếp thì ta sẽ có góc OHE=OCE=90o(đpcm)

=> cần chứng minh tứ giác OECH nội tiếp:

ta có: DOC=DHC (ccc CD)

xét MHC=MDO (tam giác MCH~MOD)= OCD (vì DO=OC)=OHD (cùng chắn OD) => HA là phân giác CHD

DOC=DHC => 1/2 DOC= 1/2 DHC =COE=CHE

mà COE với CHE cùng chắn cung CE trong tứ giác OHCE nên tứ giác đấy nội tiếp => xong :))))

Linh Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2021 lúc 21:59

a) Xét tứ giác MAOB có 

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: MA=MB(Tính chất hai tiếp tuyến cắt nhau)

Ta có: OA=OB(=R)

nên O nằm trên đường trung trực của BA(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MA=MB(cmt)

nên M nằm trên đường trung trực của BA(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB
⇔OM⊥AB(đpcm)

A bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 19:56

loading...  loading...  

Linh Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2021 lúc 22:41

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC

Do đó: \(\widehat{ADC}=\widehat{MAC}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MDA}=\widehat{MAC}\)

Xét ΔMDA và ΔMAC có 

\(\widehat{MDA}=\widehat{MAC}\)(cmt)

\(\widehat{AMD}\) chung

Do đó: ΔMDA∼ΔMAC(g-g)

Suy ra: \(\dfrac{MD}{MA}=\dfrac{AD}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MA\cdot AD=MD\cdot AC\)(đpcm)

Ctuu
Xem chi tiết
Nguyễn Huy Tú
19 tháng 3 2022 lúc 19:53

1, Vì MA ; MB lần lượt là tiếp tuyến (O) với A;B là tiếp điểm 

=> ^MAO = ^MBO = 900

Xét tam giác MAOB có ^MAO + ^MBO = 1800

mà 2 góc đối Vậy tứ giác MAOB là tứ giác nt 1 đường tròn 

2, Xét tam giác MAC và tam giác MDA

^M _ chung 

^MAC = ^MDA ( cùng chắn cung AC ) 

Vậy tam giác MAC ~ tam giác MDA (g.g) 

\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\Rightarrow MA^2=MD.MC\)

3, Ta có AM = MB ( tc tiếp tuyến cắt nhau ) 

OB = OA = R 

Vậy MO là đường trung trực 

Xét tam giác MAO vuông tại A, đường cao AH 

AO^2 = OH . OM ( hệ thức lượng ) 

\(\Rightarrow OM.OH+MC.MD=AO^2+AM^2=OM^2\left(pytago\right)\)

 

Sương
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 21:33

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

Thị Hoan Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2023 lúc 21:07

a: Xét tứ giác MAOB có

góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: Xét ΔMAN và ΔMPA có

góc MAN=góc MPA

góc AMN chung

=>ΔMAN đồng dạng với ΔMPA

=>MA/MP=MN/MA

=>MA^2=MN*MP

c: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại i

Xét ΔOAM vuông tại A có AI là đường cao

nên OI*OM=OA^2

=>OI*OM=R^2 ko đổi

Công Chúa Winx
Xem chi tiết