Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^o+90^o=180^o\) nên tứ giác MAOB nội tiếp.
Dễ dàng chứng minh được \(OI\perp CD\).
Xét tứ giác MIOB có \(\widehat{MIO}+\widehat{MBO}=90^o+90^o=180^o\) nên tứ giác MIOB nội tiếp.
Vậy ta có đpcm.
Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^o+90^o=180^o\) nên tứ giác MAOB nội tiếp.
Dễ dàng chứng minh được \(OI\perp CD\).
Xét tứ giác MIOB có \(\widehat{MIO}+\widehat{MBO}=90^o+90^o=180^o\) nên tứ giác MIOB nội tiếp.
Vậy ta có đpcm.
Cho (O) và điểm M nằm ngoài đường tròn (O). Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (O)(A,B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D. a)Chứng minh tứ giác MAOB nội tiếp b)Gọi H là giao điểm của MO và AB. Chứng minh: MC.MD=MA^2. Từ đó suy ra MC.MD=MH.MO c)Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O)
Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thẳng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng:
a) Tứ giác MAOB là tứ giác nội tiếp và
b) Bốn điểm O, H, C, D thuộc một đường tròn.
c) CI là tia phân giác của .
Cho đường tròn (O;R) và M là một điểm nằm bên ngoài đường tròn. Từ M vẽ hai tiếp tuyến MA và MB với đường tròn (O) tại A và B. Qua M vẽ cát tuyến MCD ( C nằm giữa M và D ). Gọi I là trung điểm của C và D . Chứng minh rằng: a) AIOB nội tiếp đường tròn b) gọi K là trung điểm của AM. Tia BK cắt (o) tại điểm thứ 2 là P. Tia MP cắt (o) tại điểm thứ 2 là N. Chứng minh: MC.MD=MD.MN
Cho (O;R) và một điểm M nằm ngoài (O). Từ M vẽ 2 tiếp tuyến MA, MB và cát tuyến MCD với đường tròn(MC<MD, tia MC nằm giữa 2 tia MA và MO). I là trung điểm của CD, H là giao điểm của AB và OM
a) C/m 5 điểm A, M, I, O, B cùng thuộc 1 đường tròn, xác định tâm của đường tròn đó
b) C/m IM là tia phân giác góc AIB
Cho đường tròn (O;R) và một điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB (A,B lá các tiếp điểm). N là điểm di động trên đoạn OA. Đường thẳng MN cắt (O) tại C và D (C nằm giữa M và N). Chứng minh:
a) Tứ giác MAOB nội tiếp
b) AC.BD=AD.BC
cho đường tròn(O;R) từ điểm M nằm ngoài(O) vẽ hai tiếp tuyến MA, MB( A,B là tiếp điểm). Vẽ đường kính AC của(O), MC cắt (O) tại D(D khác C). OM cắt AB tại H a) chứng minh tứ giác MAOB nội tiếp và MB^2=MC.MD b)chúng minh MO.MH=MC.MD c) CH cắt (O) tại I(Ikhacs C). chúng minh tứ giác COIM nội tiếp d) tính số đo góc MIB
Cho điểm A cố định ở bên ngoài đường trong tâm O, kẻ các tiếp tuyến AM, AN vs đường tròn (M, N là các tiếp điểm). Vẽ cát tuyến ABC vs đường tròn (O) (B nằm giữa A và C). Gọi I là trung điểm của BC. a. CM tứ giác AMON nội tiếp đường tròn b.Gọi k là giao điểm của MN và BC. CM AK.AI=AB.AC
Cho diểm A nằm ngoài đường tròn tâm O. Qua A kẻ tiếp tuyến AB (B là tiếp điểm) và cát tuyến ACD (C nằm giữa A và D). Gọi I là trung điểm AB , lấy điểm K đối xứng với A qua B. Chứng minh rằng tứ giác IKDC nội tiếp đường tròn
Từ điểm M nằm ngoài đường tròn (O;R).Vẽ tiếp tuyến MA, MB và cát tuyến MEF với đường tròn (O).(A, B là 2 tiếp điểm, ME<MF, tia MF nằm giữa hai tia Ma, MO).Dây AC song song EF. Gọi I là giao điểm BC và EF.cm I là trung điểm EF