cho hình vẽ biết AB=CD,AD=BC.cho AB//CD và AD//BC . cho góc BAD=60 độ . tính góc BCD và góc ADC
Bài 1 : Cho hình vẽ sau, biết góc BAD + ADC = 180 độ ; góc BAD = 120 độ ; ACD = 40 độ ; AB vuông góc với BC
.a. CM AB // CD
b. CM : BC vuông góc CD
c. Tính góc BAC và góc ADC
BAD + ADC = 1800
mà 2 góc này ở vị trí trong cùng phía
=> AB // CD
mà AB _I_ BC
=> CD _I_ BC
AB // CD
=> BAC = ACD (2 góc so le trong)
mà ACD = 400
=> BAC = 400
BAD + ADC = 1800
1200 + ADC = 1800
ADC = 1800 - 1200
ADC = 600
Bài 8: Cho hình thang ABCD ( AB // CD, AD > BC ) có đường chéo AC vuông góc cạnh bên CD; AC là tia phân giác góc BAD và góc D = 60 ĐỘ.
a, CM; ABCD là hình thang cân.
b, Tính độ dài cạnh AD; biết chu vi hình thang bằng 20 cm.
tia AB cắt DC tại E ta thấy
AC là phân giác của góc ^DAE (gt)
AC vuông DE (gt)
=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác)
lại có góc D = 60o nên ADE là tgiác đều
=> C là trung điểm DE (AC đồng thời la trung tuyến)
mà BC // AD => BC là đường trung bình của tgiác ADE
Ta có:
AB = DC = AD/2 và BC = AD/2
gt: AB + BC + CD + AD = 20
=> AD/2 + AD/2 + AD/2 + AD = 20
=> (5/2)AD = 20
=> AD = 2.20 /5 = 8 cm
Cho hình thang ABCD,biết góc BAD +góc ADC =180 độ ;góc BCD =70 độ
CMR :AB //CD
TÍNH Góc ABD
Cho hình thang ABCD ( AB//CD), góc ADC > góc BCD. Chứng minh AD bé hơn BC
Cho hình thang ABCD (AB //CD). Biết AB = 2,5cm; AD = 3,5cm; BD = 5cm; và góc DAB = DBC.
a) Chứng minh hai tam giác ADB và BCD đồng dạng.
b) Tính độ dài các cạnh BC và CD
a: Xét ΔADB và ΔBCD có
góc DAB=góc CBD
góc ABD=góc BDC
=>ΔADB đồng dạng với ΔBCD
b: ΔADB đồng dạng với ΔBCD
=>AD/BC=DB/CD=AB/BD
=>3,5/BC=5/CD=2,5/5=1/2
=>BC=7cm; CD=10cm
Cho hình thang ABCD có đáy AB < đáy CD. Chứng minh rằng nếu góc ADC = góc BCD thì AD = BC.
- Hình bạn tự vẽ nhé!
- Kéo dài AD và BC cắt nhau tại E
- Vì ABCD là hình thang
=> AB // DC
=> góc EAB = góc EDC
góc EBA = góc ECD
( các góc đồng vị)
mà góc EDC = góc ECD (gt)
=> góc EAB = góc EBA (bắc cầu)
=> tam giác EAB cân tại E
tam giác EDC cân tại E
=> EA = EB
ED = EC
=> ED - EA = EC - EB (bắc cầu)
=> AD = BC (đpcm)
Chúc bạn học tốt <3
Xét hình thang ABCD có \(\widehat{ADC}=\widehat{BCD}\)
nên ABCD là hình thang cân
Suy ra: AD=BC
Cho tứ giác ABCD có góc A bằng góc B và BC=AD. Chứng minh ∆DAB=∆CBA, AC=BD, góc ADC bằng góc BCD, AB//CD
Xét ΔDAB và ΔCBA có
DA=CB
\(\widehat{DAB}=\widehat{CBA}\)
BA chung
Do đó: ΔDAB=ΔCBA
Suy ra: DB=CA
Cho hình thang ABCD ( AB//CD ). Biết ab = 25cm, AD = 3,5cm, BD = 5cm và góc DAB = góc DBC
a) CM tam giác ADB đồng dạng với tam giác BCD
b) Tính BC và CD
c) Tính tỉ số diện tích tam giác ADB và BCD
a, Xét tam giác ADB và tam giác BCD có
^DAB = ^CBD ; ^ABD = ^CDB ( soletrong)
Vậy tam giác ADB ~ tam giác BCD (g.g)
b, \(\dfrac{AD}{BC}=\dfrac{AB}{BD}\Rightarrow BC=\dfrac{AD.BD}{AB}=\dfrac{7}{10}cm\)
\(\dfrac{DB}{CD}=\dfrac{AB}{BD}\Rightarrow CD=\dfrac{BD^2}{AB}=1cm\)
c, Ta có \(\dfrac{S_{ADB}}{S_{BCD}}=\left(\dfrac{AD}{BC}\right)^2=25\)
Cho hình thang ABCD ( AB//CD ). Biết ab = 2,5cm, AD = 3,5cm, BD = 5cm và góc DAB = góc DBC
a) CM tam giác ADB đồng dạng với tam giác BCD
b) Tính BC và CD
c) Tính tỉ số diện tích tam giác ADB và BCD
a) Xét 2 tam giác ADB và BCD có: góc DAB = góc DBC (gt) góc ABD = góc BDC ( so le trong ) nên tam giác ADB đồng dạng với tam giác BDC.(1) b) Từ (1) ta được AB/BC = DB/CD = AB/BD hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5 ==> BC= 3,5*5/2,5 = 7 (cm) ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5 ==> CD = 5*5/2,5 =10 (cm) c) Từ (1) ta được; AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 . ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2 mà tỉ số diện tích bằng bình phương tỉ số động dạng do đó S ADB/ S BCD = (1/2)^2 = 1/4