Xét phương trình \(a{x^2} + bx + c = 0(a \ne 0)\). Giả sử phương trình đó có 2 nghiệm là \({x_1},{x_2}.\) Tính \({x_1} + {x_2};{x_1}.{x_2}\) theo các hệ số \(a,b,c.\)
Cho phương trình $ax^2+bx+c=0$ có các nghiệm $x_1,$ $x_2$. Lập phương trình bậc hai có các nghiệm $y_1,$ $y_2$ sao cho:
a) $y_1=3x_1;y_2=3x_2$;
b) $x_1+y_1=0;x_2+y_2=0$.
Áp dụng hệ thức Vi-ét ta có:
y1+y2= 3x1+3x2=3(x1+x2)
=\(\dfrac{-3b}{a}\)
y1y2=\(\dfrac{9c}{a}\)
Ta có pt x^2 +\(\dfrac{3b}{a}x+\dfrac{9c}{a}=0\)
Giả sử phương trình \(ax^2+bx+c=0\left(a\ne0\right)\) có 2 nghiệm là \(x_1\)và \(x_2\). Chứng minh rằng ta có thể phân tích \(ax^2+bx+c=a\left(x-x_1\right)\left(x-x_2\right)\)
Áp dụng định lí viet: \(x_1+x_2=-\frac{b}{a},x_1.x_2=\frac{c}{a}\)
\(ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=a\left(x^2-\left(x_1+x_2\right)x+x_1.x_2\right)=a\left[\left(x^2-x_1.x\right)-\left(x_2x-x_1x_2\right)\right]\)
=\(a\left[x\left(x-x_1\right)-x_2\left(x-x_1\right)\right]=a\left(x-x_1\right)\left(x-x_2\right)\)
Giả sử \(x_1,x_2\) là hai nghiệm của phương trình \(x^2+px+q=0\). Hãy lập một phương trình bậc hai có hai nghiệm là \(x_1+x_2\) và \(x_1.x_2\)
Ứng dụng hệ thức viet thì ptr đó là x2-(x1+x2)x+x1x2=0
Cho phương trình \(x^2-4x-6=0\). Không giải phương trình, tính giá trị của biểu thức sau (\(x_1,x_2\) là hai nghiệm của phương trình):
\(A=x^2_1+x^2_2;\)
\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
\(C=x^3_1+x^3_2\)
\(D=\left|x_1-x_2\right|\)
\(x^2-4x-6=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-6\right)=16+24=40>0\)
=>Phương trình này có hai nghiệm phân biệt
Theo vi-et, ta có:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-6}{1}=-6\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4^2-2\cdot\left(-6\right)=16+12=28\)
\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1\cdot x_2}=\dfrac{4}{-6}=-\dfrac{2}{3}\)
\(C=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\cdot\left(x_1+x_2\right)\)
\(=4^3-3\cdot4\cdot\left(-6\right)=64+72=136\)
\(D=\left|x_1-x_2\right|\)
\(=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{4^2-4\cdot\left(-6\right)}=\sqrt{16+24}=\sqrt{40}=2\sqrt{10}\)
Giả sử \(x_1,x_2\) là nghiệm của phương trình \(ax^2+bx+c=0,\left(x\ne0\right)\). Điều nào sau đây đúng ?
a) \(x_1+x_2=\dfrac{b}{a};x_1.x_2=\dfrac{c}{a}\)
b) \(x_1+x_2=-\dfrac{b}{a};x_1.x_2=-\dfrac{c}{a}\)
c) \(x_1+x_2=\dfrac{b}{a};x_1.x_2=-\dfrac{c}{a}\)
d) \(x_1+x_2=-\dfrac{b}{a};x_1.x_2=\dfrac{c}{a}\)
Theo hệ thức viet thì đáp án là câu d(đk là a khác 0)
1 . Cho pt :\(x^2-mx+m-1=0\) . Tìm m để pt có 2 nghiệm \(x_1,x_2\) và biểu thức \(A=\dfrac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}\) đạt GTLN
2.Giả sử m là giá trị để phương trình \(x^2-mx+m-2=0\) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1^{^2}-2}{x_1-1}.\dfrac{x^2_2-2}{x_2-1}=4\) . Tìm các giá trị của m
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
Giả sử phương trình bậc hai \(ax^2+bx+c=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2=2x_1x_2\). Chứng minh rằng biệt thức \(\Delta\) của phương trình không phụ thuộc vào các hệ số a, b,c
Theo Vi et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)
Theo giả thuyết thì:
\(x_1^2+x_2^2=2x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)
\(\Leftrightarrow\frac{b^2}{a^2}-\frac{4c}{a}=0\)
\(\Leftrightarrow b^2-4ac=0\)
Vậy ta có ĐPCM
cho phương trình \(x^2+mx+n-3=0\)
a, cho n = 0, chứng minh phương trình luôn có nghiệm với mọi m
b,tìm m và n để 2 nghiệm \(x_1;x_2\) của phương trình (i) thoả mãn \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\)
\(\Delta=m^2+12>0\) ; \(\forall m\)
\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)
Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)
Cho phương trình: \(x^2-\left(m-1\right)x-m^2+m-1=0\)0 (1)
Chứng minh phương trình (1) luôn có nghiệm \(\forall m\). Giả sử 2 nghiệm là \(x_1,x_2\left(x_1< x_2\right)\),khi đó tìm m để \(\left|x_2\right|-\left|x_1\right|=2\)
ko biết làm
\(\Delta=\left[-\left(m-1\right)\right]^2-4.1.\left(m-1\right)\)
\(=m^2-2m+1-4m+4\)
\(=m^2-6m+4+1\)
\(=\left(3-m\right)^2+1>0\)với mọi m
Áp dụng hệ thức Vi ét , ta có :
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m-1\\x_1x_2=\frac{c}{a}=m-1\end{cases}\left(1\right)}\)
Theo bài ra ta có :
\(\left|x_2\right|-\left|x_1\right|=2\)
\(\Leftrightarrow\left(x_2-x_1\right)^2=2^2\)
\(\Leftrightarrow x_2^2+x_1^2-2x_1x_2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)-2x_1x_2-2x_1x_2=4\)(2)
Thay (1) vào (2) ta được :
\(\left(m-1\right)-2\left(m-1\right)-2\left(m-1\right)=4\)
\(\Leftrightarrow m-1-2m+2-2m+2=4\)
tự giải tiếp =))
cho phương trình : \(x^2-x-1=0\) có hai nghiệm phân biệt \(x_1,x_2\) không giải phương trình hãy tính giá trị của biểu thức T = \(x_1^4-x_1^2+x_2^2-x_1\)