Ứng dụng hệ thức viet thì ptr đó là x2-(x1+x2)x+x1x2=0
Ứng dụng hệ thức viet thì ptr đó là x2-(x1+x2)x+x1x2=0
Gọi x1, x2 là nghiệm của phương trình x2+2x-4=0. Hãy lập phương trình bậc hai có 2 nghiệm là:
a) x1+2 và x2+2
b) \(\dfrac{1}{x_1+1}\) và \(\dfrac{1}{x_2+1}\)
c) \(\dfrac{x_1}{x_2}\)và \(\dfrac{x_2}{x_1}\)
d) \(x^2_1\)+\(x^2_2\) và \(x_1\)+\(x_2\)
Mọi người giúp mình với. Cần gấp trước 19h15 hôm nay, mình cảm ơn trước ạ.
Cho phương trình \(x^2+px-5=0\) có nghiệm là \(x_1\) và \(x_2\). Hãy lập phương trình có hai nghiệm là hai số được cho trong mỗi trường hợp sau :
a) \(-x_1\) và \(-x_2\)
b) \(\dfrac{1}{x_1}\) và \(\dfrac{1}{x_2}\)
Cho phương trình 2x2 - 3x + 1 = 0 . Không giải phương trình, gọi x1, x2 là hai nghiệm của phương trình. Hãy tính giá trị của các biểu thức sau:
a) A = \(\dfrac{1-x_1}{x_1}\)+\(\dfrac{1-x_2}{x_2}\)
b) B = \(\dfrac{x_1}{x_2+1}\)+\(\dfrac{x_2}{x_1+1}\)
Gọi y1,y2 là hai nghiệm của phương trình \(y^2+3y+1=0\). Tìm p và q sao cho
\(x^2+px+q=0\) có hai nghiệm là \(x_1=y_1^2+2y_2,x_2=y_2^2+y_1\).
Gọi y1,y2 là hai nghiệm của phương trình \(y^2+3y+1=0\). Tìm p và q sao cho
\(x^2+px+q=0\) có hai nghiệm là \(x_1=y_1^2+2y_2,x_2=y_2^2+2y_1\).
Cho phương trình \(x^2-4x-6=0\). Không giải phương trình, tính giá trị của biểu thức sau (\(x_1,x_2\) là hai nghiệm của phương trình):
\(A=x^2_1+x^2_2;\)
\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}\)
\(C=x^3_1+x^3_2\)
\(D=\left|x_1-x_2\right|\)
Đối với mỗi phương trình sau, kí hiệu x1, x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điển vào những chỗ trống (...):
a) 2x2 - 17x + 1 = 0; \(\Delta=...;x_1+x_2=...,x_1.x_2=...;\)
b) 5x2 - x - 35 = 0, \(\Delta=...;x_1+x_2=...,x_1.x_2=...;\)
c) 8x2 - x + 1 = 0, \(\Delta=...;x_1+x_2=...,x_1.x_2=...;\)
d) 25x2 + 10x + 1= 0, \(\Delta=...;x_1+x_2=...,x_1.x_2=...\)
\(\text{Cho phương trình: x^2-2(m+1)x+3m-3=0 ( x là ẩn, m là tham số)}\)
\(\text{Tìm m để phương trình có hai nghiệm x_1,x_2 phân biệt sao cho}\)
\(\sqrt{x_1-1}+\sqrt{x_2-1}=4\)
Giải hộ mình với ạ
Cho phương trình \(x^2-\left(n-2\right)x-3\) ( n là tham số). Chứng minh phương trình luôn có hai nghiệm \(x_1;x_2\) với mọi n. Tìm n để các nghiệm thoả mãn hệ thức:
\(\sqrt{x^2_1+2018}-x_1=\sqrt{x^2_2+2018}+x_2\)