Hãy vẽ một đường tròn và hai góc nội tiếp trong đường tròn đó.
Mỗi câu sau đây đúng hay sai
(A) Góc nội tiếp là góc tạo bởi hai dây của đường tròn đó.
(B) Trong một đường tròn, hai góc nội tiếp bằng nhau thì cùng chắn một cung.
(C) Trong một đường tròn, hai góc nội tiếp không cùng chắn một cung thì không bằng nhau.
(D) Trong một đường tròn, số đo của một góc nội tiếp bằng số đo cung bị chắn.
(E) Trong một đường tròn, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
(A) Sai. Góc nội tiếp là góc có đỉnh nằm trên đường tròn, hai cạnh chứa hai dây cung của đường tròn đó.
(B) Sai. Trong một đường tròn, hai góc nội tiếp bằng nhau thì cùng chắn một cung hoặc chắn hai cung bằng nhau.
(C) Sai. Trong một đường tròn, hai góc nội tiếp chắn hai cung bằng nhau thì bằng nhau.
(D) Sai. Trong một đường tròn, số đo của góc nội tiếp bằng một nửa số đo của góc ở tâm cùng chắn một cung.
(E) Đúng. Trong một đường tròn, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
Mỗi câu sau đây đúng hay sai ?
(A) Góc nội tiếp là góc tạo bởi hai dây của đường tròn đó
(B) Trong một đường tròn, hai góc nội tiếp bằng nhau thì cùng chắn một cung
(C) Trong một đường tròn, hai góc nội tiếp khong cùng chắn một cung thì không bằng nhau
(D) Trong một đường tròn, số đo của một góc nội tiếp bằng số đo của cung bị chắn
(E) Trong một đường tròn, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung
Hãy chỉ ra phương án mà em cho là đúng.
Góc nội tiếp là góc:
(A) có đỉnh nằm trên đường tròn.
(B) có hai cạnh là hai dây của đường tròn.
(C) có hai đỉnh là tâm đường tròn và có hai cạnh là hai bán kính.
(D) có hai cạnh là hai dây của đường tròn đó và chỉ có một đầu mút chung.
Chọn (D) có hai cạnh là hai dây của đường tròn đó và chỉ có một đầu mút chung.
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm (O). Từ B và C vẽ hai tiếp tuyến của đường tròn, hai tiếp tuyến này cắt nhau ở D. Qua D vẽ một cát tuyến sonng song với AB, cát tuyến này cắt đường tròn tại các điểm M và N và cắt cạnh AC tai I
a) Chứng minh tứ giác OBDC nội tiếp đường tròn (O)
b) Chứng minh I là trung điểm của dây MN
Góc nội tiếp là góc :
(A) có đỉnh nẳm trên đường tròn
(B) có hai cạnh là hai dây của đường tròn
(C) có hai đỉnh là tâm đường tròn và có hai cạnh là hai bán kính
(D) có hai cạnh là hai dây của đường tròn đó và chỉ có một đầu mút chung
Hãy chọn phương án đúng ?
Phương án (D) đúng :
Góc nội tiếp là góc có hai cạnh là hai dây của đường tròn đó và chỉ có một đầu mút chung.
Cho đường tròn (C) có tâm I(1; 2) và bán kính bằng 3. Chứng minh rằng tập hợp các điểm M mà từ đó vẽ được hai tiếp tuyến với (C) tạo với nhau một góc 60o là một đường tròn. Hãy viết phương trình đường tròn đó.
Gọi A, B là hai tiếp điểm của tiếp tuyến kẻ từ M đến (C).
Mà điểm I là cố định nên tập hợp các điểm M là đường tròn tâm I, bán kính R = 6 và có phương trình: (x – 1)2 + (y – 2)2 = 36.
Từ điểm M ở ngoài đường tròn (O) vẽ hai tiếp tuyến MA, MB và một cát tuyến MDE với đường tròn (tâm O nằm ngoài góc AME). a) Chứng minh tứ giác MAOB nội tiếp, xác định tâm và bán kính đường tròn này. b) Vẽ đường kính AK của đường tròn (O). Chứng minh BK // OM. c) DK cắt OM tại I. Chứng minh Tứ giác MDIB nội tiếp.
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp đường tròn đường kính MO
Tâm là trung điểm của MO
Bán kính là MO/2
b: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
góc ABK=1/2*sđ cung AK=90 độ
=>AB vuông góc BK
=>BK//OM
Cho hai đường tròn tâm O và tâm O’ tiếp xúc ngoài tại B. AA’ là tiếp tuyến chung ngoài của hai đường tròn đó. Kẻ đường kính BC và BC’ của đường tròn tâm O và đường tròn tâm O’. CMR:
- AB vuông góc với A’B
- BA song song với A’C’
- CA song song với BA’
- Tứ giác AA’CC’ nội tiếp trong một đường tròn.
Cho ∆ABC có 3 góc nhọn (AB < AC) nội tiếp trong đường tròn (O) , hai đường cao BF và CE cắt nhau tại H
a/ Chứng minh 4 điểm B, E, F,C cùng nằm trên một đường tròn . Xác định tâm I của đường tròn đó
b/ Tia AH cắt (O) tại M và vẽ đường kính AD của đường tròn (O) . Chứng minh tứ giác BCDM là hình thang cân
c/ Chứng minh H, I, D thẳng hàng
d/ AD cắt EF tại K . Chứng minh AD vuông EF
a: Xét tứ giác BEFC có \(\widehat{BEC}=\widehat{BFC}=90^0\)
nên BEFC là tứ giác nội tiếp đường tròn đường kính BC
=>B,E,F,C cùng thuộc một đường tròn
tâm I là trung điểm của BC
b: Xét ΔABC có
BF,CE là các đường cao
BF cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
=>AM\(\perp\)BC
Xét (O) có
ΔAMD nội tiếp
AD là đường kính
Do đó: ΔAMD vuông tại M
=>AM\(\perp\)MD
Ta có: AM\(\perp\)BC
AM\(\perp\)MD
Do đó: BC//MD
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Ta có: \(\widehat{BAH}+\widehat{ABC}=90^0\)(AH\(\perp\)BC)
\(\widehat{ADC}+\widehat{CAD}=90^0\)(ΔACD vuông tại C)
mà \(\widehat{ABC}=\widehat{ADC}\)
nên \(\widehat{BAH}=\widehat{CAD}\)
=>\(\widehat{BAH}+\widehat{MAD}=\widehat{CAD}+\widehat{MAD}\)
=>\(\widehat{BAD}=\widehat{CAM}\)(1)
Xét (O) có
\(\widehat{BAD}\) là góc nội tiếp chắn cung BD
\(\widehat{BCD}\) là góc nội tiếp chắn cung BD
Do đó: \(\widehat{BAD}=\widehat{BCD}\left(2\right)\)
Xét (O) có
\(\widehat{CBM}\) là góc nội tiếp chắn cung CM
\(\widehat{CAM}\) là góc nội tiếp chắn cung CM
Do đó: \(\widehat{CBM}=\widehat{CAM}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{CBM}=\widehat{BCD}\)
Xét tứ giác BCDM có BC//DM
nên BCDM là hình thang
Hình thang BCDM có \(\widehat{CBM}=\widehat{BCD}\)
nên BCDM là hình thang cân
c: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BA\(\perp\)BD
mà CH\(\perp\)BA
nên CH//BD
Ta có: CD\(\perp\)CA
BH\(\perp\)AC
Do đó: BH//CD
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
=>H,I,D thẳng hàng
d: Kẻ tiếp tuyến Ax của (O)
Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{AFE}\left(=180^0-\widehat{EFC}\right)\)
nên \(\widehat{xAC}=\widehat{AFE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên EF//Ax
Ta có: Ax//EF
Ax\(\perp\)AD
Do đó: AD\(\perp\)EF tại K
Cho đường tròn tâm O bán kính R và điểm M nằm ngoài đường tròn. Từ M vẽ hai tiếp tuyến MA, MB với đường tròn (A,B là hai tiếp tuyến) a) Chứng minh tứ giác MAOB là nội tiếp trong một đường tròn b) Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D). Chứng minh hệ thức MA^2 = MC.MD c) Gọi H là trung điểm của dây CD. Chứng minh HM là tia phân giác của góc AHB giúp em với ạ em đang cần gấp
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC