Rút gọn biểu thức
\(A=\dfrac{tan^2a-sin^2a}{cot^2a-cos^2a}\)
Rút gọn biểu thức:
\(\left(1+tan^2a\right)\left(1-sin^2a\right)+\left(1+cot^2a\right)\left(1-cos^2a\right)\)
\(\left(1+\frac{\sin^2}{\cos^2}\right)cos^2-\left(1+\frac{cos^2}{sin^2}\right)sin^2.\)
=> \(\frac{cos^2+sin^2}{cos^2}\left(cos^2\right)-\frac{sin^2+cos^2}{sin^2}\left(sin^2\right)\)
=> 1-1 =0
\(=\frac{1}{cos^2a}\cdot cos^2a+\frac{1}{sin^2a}\cdot sin^2a\)
\(=1+1\)
\(=2\)
rút gọn biểu thức \(\frac{sin^2a-tan^2a}{cos^2a-cot^2a}\)
\(A=\frac{sin^2a-tan^2a}{cos^2a-cot^2a}=\frac{sin^2a-\frac{sin^2a}{cos^2a}}{cos^2a-\frac{cos^2a}{sin^2a}}=\frac{\frac{sin^2a\left(cos^2a-1\right)}{cos^2a}}{\frac{cos^2a\left(sin^2a-1\right)}{sin^2a}}=\frac{sin^4a.\left(-sin^2a\right)}{cos^4a.\left(-cos^2a\right)}=\frac{sin^6a}{cos^6a}=tan^6a\)
a, cho tan a=3 . tính gt của biểu thức
\(\dfrac{\sin a\cos a+\cos^2a}{2\sin^2a-\cos^2a}\)
b, c/m đẳng thức
\(\cot\left(\dfrac{\pi}{2}-x\right)\cos\left(\dfrac{\pi}{2}+x\right)+\dfrac{\sin\left(\pi-x\right)\cot x}{1-\sin^2x}=\cos x\)
Câu a)
Từ \(\tan a=3\Leftrightarrow \frac{\sin a}{\cos a}=3\Rightarrow \sin a=3\cos a\)
Do đó:
\(\frac{\sin a\cos a+\cos ^2a}{2\sin ^2a-\cos ^2a}=\frac{3\cos a\cos a+\cos ^2a}{2(3\cos a)^2-\cos ^2a}\)
\(=\frac{\cos ^2a(3+1)}{\cos ^2a(18-1)}=\frac{4}{17}\)
Câu b)
Có: \(\cot \left(\frac{\pi}{2}-x\right)=\tan x=\frac{\sin x}{\cos x}\)
\(\cos\left(\frac{\pi}{2}+x\right)=-\sin x\)
\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)=\frac{-\sin ^2x}{\cos x}\)
Và:
\(\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{\sin x\cot x}{\cos^2x}=\frac{\sin x.\frac{\cos x}{\sin x}}{\cos^2x}=\frac{1}{\cos x}\)
Do đó:
\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)+\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{1-\sin ^2x}{\cos x}=\frac{\cos ^2x}{\cos x}=\cos x\)
Ta có đpcm.
a) Tính \(sin2a\) biết tan a\(=\dfrac{1}{15}\)
b) Cho \(3sina+4cosa=5\). Tính cos a và sin a
c) Tính \(sin^22a\) biết \(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
a.
\(tana=\dfrac{sina}{cosa}=\dfrac{1}{15}\Rightarrow sina=\dfrac{cosa}{15}\)
\(\Rightarrow sin2a=2sina.cosa=\dfrac{2cosa}{15}.cosa=\dfrac{2}{15}cos^2a=\dfrac{2}{15}.\dfrac{1}{1+tan^2a}=\dfrac{2}{15}.\dfrac{1}{1+\dfrac{1}{15^2}}=\dfrac{15}{113}\)
b.
\(5^2=\left(3sina+4cosa\right)^2\le\left(3^2+4^2\right)\left(sin^2+cos^2a\right)=25\)
Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{sina}{3}=\dfrac{cosa}{4}\\3sina+4cosa=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}sina=\dfrac{3}{5}\\cosa=\dfrac{4}{5}\end{matrix}\right.\)
c.
\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+\dfrac{sin^2a}{cos^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
\(\)\(\Leftrightarrow\dfrac{sin^4a+cos^4a}{sin^2a.cos^2a}+\dfrac{sin^2a+cos^2a}{sin^2a.cos^2a}=7\)
\(\Leftrightarrow\dfrac{\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a}{sin^2a.cos^2a}+\dfrac{1}{sin^2a.cos^2a}=7\)
\(\Leftrightarrow\dfrac{2}{sin^2a.cos^2a}=9\)
\(\Leftrightarrow\dfrac{8}{\left(2sina.cosa\right)^2}=9\)
\(\Leftrightarrow\dfrac{8}{sin^22a}=9\)
\(\Leftrightarrow sin^22a=\dfrac{8}{9}\)
Rút gọn biểu thức sau:
a) \(\left(1-\cos a\right)\left(1+\cos a\right)\)
b) \(1+\sin^2a+\cos^2a\)
c) \(\sin a-\sin a\cos^2a\)
d) \(\sin^4a+\cos^4a+2\sin^2a\cos^2a\)
e)\(\tan^2a-\sin^2a\tan^2a\)
f) \(\cos^2a+\tan^2a\cos^2a\)
GIẢI GIÚP MIK VS M.N!!!!!!!
(cos^2a - sin^2b)/(sin^2a * sin^2b) - cot^2a * cot^2b
rút gọn
Chứng minh: \(\dfrac{sin^2a-tan^2a}{cos^2a-cot^2a}\) = tan6a
\(\dfrac{\sin^2a-\tan^2a}{\cos^2a-\cot^2a}=\dfrac{\sin^2a-\dfrac{\sin^2a}{\cos^2a}}{\cos^2a-\dfrac{\cos^2a}{\sin^2a}}=\dfrac{\dfrac{\sin^2a\cos^2a-\sin^2a}{\cos^2a}}{\dfrac{\cos^2a\sin^2a-\cos^2a}{\sin^2a}}=\dfrac{\sin^2a\sin^2a\left(\cos^2a-1\right)}{\cos^2a\cos^2a\left(\sin^2a-1\right)}\)
\(=\dfrac{\sin^4a\left(\cos^2a-\cos^2a-\sin^2a\right)}{\cos^4a\left(\sin^2a-\cos^2a-\sin^2a\right)}=\dfrac{\sin^4a\left(-\sin^2a\right)}{\cos^4a\left(-\cos^2a\right)}\)
\(=\dfrac{-\sin^6a}{-\cos^6a}=\dfrac{\sin^6a}{\cos^6a}=\tan^6a\)
chứng minh
a) \(\frac{sin^2a+2cos^2a-1}{cot^2a}=sin^2a\)
b) \(\frac{1-sin^2a.cos^2a}{cos^2a}-cos^2a=tan^2a\)
c) \(\frac{sin^2a-tan^2a}{cos^2a-cot^2a}=tan^6a\)
Lời giải:
a)
\(\frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{(\sin ^2a+\cos ^2a)+\cos ^2a-1}{\cot ^2a}=\frac{1+\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{(\frac{\cos a}{\sin a})^2}=\sin ^2a\)
b)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\tan ^2a+1-1=\tan ^2a\)
c)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}=\frac{\sin ^4a(\cos ^2a-1)}{\cos ^4a(\sin ^2a-1)}\)
\(=\frac{\sin ^4a(-\sin ^2a)}{\cos ^4a(-\cos ^2a)}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)
Cho \(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\).
Tính cos4a
\(\dfrac{1}{tan^2a}+\dfrac{1}{cot^2a}+\dfrac{1}{sin^2a}+\dfrac{1}{cos^2a}=7\)
=>\(\dfrac{sin^2a+1}{cos^2a}+\dfrac{cos^2a+1}{sin^2a}=7\)
=>\(\dfrac{sin^4a+sin^2a+cos^4a+cos^2a}{sin^2a\cdot cos^2a}=7\)
=>\(sin^4a+cos^4a+1=7\cdot sin^2a\cdot cos^2a\)
=>\(\left(sin^2a+cos^2a\right)^2-2\cdot sin^2a\cdot cos^2a+1=7\cdot sin^2a\cdot cos^2a\)
=>\(2=9\cdot sin^2a\cdot cos^2a\)
=>\(8=9\cdot sin^22a\)
=>16=9(1-cos4a)
=>1-cos4a=16/9
=>cos4a=-7/9
rút gọn biểu thức
\(\cos^2a+\cos^2a.\cot^2a\)
Áp dụng hằng đẳng thức \(1+cot^2a=\frac{1}{sin^2a}\) được \(cos^2a+cos^2a.cot^2a=cos^2a\left(1+cot^2a\right)=cos^2a.\frac{1}{sin^2a}=\frac{sin^2a}{cos^2a}=tan^2a\)