Viết phương trình chính tắc của đường thẳng OM, biết M(a; b; c) với abc ≠ 0.
Viết phương trình chính tắc của đường thẳng D đi qua M( -2; -1) và nhận vectơ u → ( 1 ; 2 ) làm vectơ chỉ phương.
A. 2x- y+ 3= 0
B. x + 2 1 = y + 1 2
C. x = - 2 + 1 t y = - 1 + 2 t
D: x - 1 - 2 = y - 2 - 1
Viết phương trình tham số và phương trình chính tắc của đường thẳng (d): x + y - 20 = 0
\(\left(d\right):x+y-20=0.\\ \Rightarrow\overrightarrow{n_d}=\left(1;1\right).\\ \Rightarrow\overrightarrow{u_d}=\left(1;-1\right).\)
\(Cho\) \(x=1.\Rightarrow y=19.\Rightarrow A\left(1;19\right)\in\left(d\right).\)
Ta có \(\left(d\right):\) đi qua \(A\left(1;19\right);\overrightarrow{u_d=}\left(1;-1\right)\) là vecto chỉ phương.
\(\Rightarrow\) Phương trình tham số:
\(\left\{{}\begin{matrix}y=1+t.\\y=19-t.\end{matrix}\right.\)
\(\Rightarrow\) Phương trình chính tắc:
\(\dfrac{x-1}{1}=\dfrac{y-19}{-1}.\\ \Leftrightarrow x-1=-y+19.\)
(d):x+y−20=0.⇒→nd=(1;1).⇒→ud=(1;−1).(d):x+y−20=0.⇒nd→=(1;1).⇒ud→=(1;−1).
ChoCho x=1.⇒y=19.⇒A(1;19)∈(d).x=1.⇒y=19.⇒A(1;19)∈(d).
Ta có (d):(d): đi qua A(1;19);−−−→ud=(1;−1)A(1;19);ud=→(1;−1) là vecto chỉ phương.
⇒⇒ Phương trình tham số:
{y=1+t.y=19−t.{y=1+t.y=19−t.
⇒⇒ Phương trình chính tắc:
HT
a,Viết PT chính tắc của đường tròn (C) biết tâm I(1;-2) di qua điểm A(-2;0) b. Viết phương trình tiếp tuyến của (C) tại M(4,0)
a: \(IA=\sqrt{\left(-2-1\right)^2+\left(0+2\right)^2}=\sqrt{13}\)
Phương trình (C) là:
(x-1)^2+(y+2)^2=13
b: vecto IM=(3;2)
Phương trình tiếp tuyến là:
3(x-4)+2(y-0)=0
=>3x+2y-12=0
Viết phương trình tham số, phương trình chính tắc của đường thẳng ∆ trong các trường hợp sau: ∆ đi qua điểm A(1; 2; 3) và có vecto chỉ phương a → = (3; 3; 1)
Phương trình tham số của đường thẳng Δ đi qua điểm A(1; 2; 3) và có vecto chỉ phương
a → = (3; 3; 1) là:
Phương trình chính tắc của ∆ là:
Trong không gian Oxyz cho 2 điểm A(-2;4;-5); B(1; -7; 0)
Viết phương trình chính tắc của đường thẳng đi qua 2 điểm A,B
\(\overrightarrow{AB}=\left(1--2,-7-4,0--5\right)=\left(3,-11,5\right)\)
Đi qua \(A\left(-2,4,-5\right)\)
Phương trình chính tắc :
\(\dfrac{x+2}{3}=\dfrac{y-4}{-11}=\dfrac{z+5}{5}\)
Viết phương trình tham số, phương trình chính tắc của đường thẳng ∆ trong các trường hợp sau: ∆ đi qua hai điểm C(1; -1; 1) và D(2; 1; 4)
∆ đi qua hai điểm C và D nên có vecto chỉ phương CD → = (1; 2; 3)
Vậy phương trình tham số của ∆ là
Phương trình chính tắc của ∆ là:
Viết phương trình chính tắc của đường parabol, biết tiêu điểm \(F\left( {6;0} \right)\).
Do parabol có tiêu điểm là \(F\left( {6;0} \right)\) nên ta có \(\frac{p}{2} = 6 \Leftrightarrow p = 12\)
Vậy phương trình chính tắc của parabol là: \({y^2} = 24x\)
Trong không gian Oxyz, cho mặt phẳng (P) có phương trình x + 2 y + z - 4 = 0 và đường thẳng d : x + 1 2 = y 1 = z + 3 2 . Viết phương trình chính tắc của đường thẳng∆nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d.
Đáp án C.
Gọi I là giao điểm của d và (P). Tọa độ I là nghiệm của hệ:
Ta có một vecto chỉ phương của ∆ như sau:
Vậy phương trình:
Chú ý: Do ∆ cắt d và ∆ nằm trong (P) nên ∆ phải đi qua I. Do đó ta có thể chọn được đáp là C mà không cần tìm VTCP của∆.
Trong không gian Oxyz, cho mặt phẳng (P) có phương trình x+2y+z-4=0 và đường thẳng d: x + 1 2 = y 1 = z + 2 3 . Viết phương trình chính tắc của đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d
A. x + 5 1 = y - 1 1 = z - 3 1
B. x - 5 1 = y + 1 1 = z + 3 1
C. x - 1 5 = y - 1 - 1 = z - 1 - 3
D. x + 1 5 = y + 1 - 1 = z + 1 - 3
Viết phương trình chính tắc H . Biết H đi qua M(-2;1) và góc giữa 2 đường tiệm cận 60 độ