a: \(IA=\sqrt{\left(-2-1\right)^2+\left(0+2\right)^2}=\sqrt{13}\)
Phương trình (C) là:
(x-1)^2+(y+2)^2=13
b: vecto IM=(3;2)
Phương trình tiếp tuyến là:
3(x-4)+2(y-0)=0
=>3x+2y-12=0
a: \(IA=\sqrt{\left(-2-1\right)^2+\left(0+2\right)^2}=\sqrt{13}\)
Phương trình (C) là:
(x-1)^2+(y+2)^2=13
b: vecto IM=(3;2)
Phương trình tiếp tuyến là:
3(x-4)+2(y-0)=0
=>3x+2y-12=0
a) viết phương trình đường tròn (C) có tâm I(2,3) đi qua điểm A(5,7) b) viết phương trình tiếp tuyến của đường tròn (C) : (x-1)^2 + ( y+5)^2 =4 . Biết tiếp tuyến song song với đường thẳng (d) 3x + 4y - 1 =0
Trong mặt phẳng Oxy, cho đường tròn (C): x2+y2-2x-2y-14=0 và điểm A(2;0). Gọi I là tâm của (C). Viết pt đường thẳng đi qua A và cắt (C) tại hai điểm M, N sao cho tam giác IMN có diện tích lớn nhất.
Cho △ABC biết A(-2;4) B(5;5) C(6;-2)
a) Viết phương trình đường thẳng đi qua C và vuông góc với AB
b) Viết phương trình đường trung tuyến BK
c) Viết phương trình đường tròn tâm B,bán kính AC
d) Viết phương trình đi qua 3 điểm A,B,C
Câu 3: Viết phương trình tổng quát của đường thẳng d đi qua hai điểm A(1;2), B(-3;0).
Câu 4: Viết phương trình tổng quát đường cao AH của tam giác ABC biết A(1;-3), B(2;0), C(3;-1).
Câu 5: Viết phương trình tổng quát của đường thẳng d đi qua hai điểm A(3;-1), B(2;3)
Câu 9: Một hộp đựng 7 chiếc bút bi đen và 8 chiếc bút bi xanh. Lấy đồng thời và ngẫu nhiên hai chiếc bút. Tính xác suất để hai chiếc bút lấy được cùng màu?
Câu 10: Xếp 5 quyển sách Toán và 5 quyển sách Văn khác nhau lên một kệ dài. Tính xác suất để 2 quyển sách cùng một môn nằm cạnh nhau.
Cho đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính R và điểm \(K\left(1;3\right)\)
a) Cho R = 1. Viết phương trình tiếp tuyến của (C) đi qua K
b Xác định R để từ K vẽ được đến (C) hai tiếp tuyến tiếp xúc với (C) lần lượt tại hai điểm \(M_1,M_2\) sao cho diện tích tứ giác \(KM_1IM_2\) bằng \(2\sqrt{6}\)
Trong mặt phẳng tọa độ Oxy, lập phương trình chính rắc của elip (E) biết (E) có tiêu điểm \(F_1\left(-2;0\right)\) và diện tích hình chữ nhật cơ sở bằng \(12\sqrt{5}\). Viết phương trình đường tròn (C) có tâm là gốc tọa độ và (C) cắt (E) tại bốn điểm tạo thành một hình vuông ?
Cho tam giác ABC có tọa độ các điểm A(1;1),B(2;3),C(4;0)
a, viết phương trình tổng quát của đường thẳng BC
b, Viết phương trình đường tròn (C) có tâm là trọng tâm tam giác ABC và tiếp xúc với đường thẳng BC
Trong mặt phẳng tọa độ Oxy, cho hai đường tròn :
\(\left(C_1\right):x^2+y^2+10x=0\)
\(\left(C_2\right):x^2+y^2-4x-2y-20=0\)
có tâm lần lượt là I, J
a) Viết phương trình đường tròn (C) đi qua các giao điểm của \(\left(C_1\right),\left(C_2\right)\) và có tâm nằm trên đường thẳng \(d:x-6y+6=0\)
b) Viết phương trình tiếp tuyến chung của \(\left(C_1\right),\left(C_2\right)\). Gọi \(T_1,T_2\) lần lượt là tiếp điểm của \(\left(C_1\right),\left(C_2\right)\) với một tiếp tuyến chung, hãy viết phương trình đường thẳng \(\Delta\) qua trung điểm của \(T_1T_2\) và vuông góc với IJ
Cho đường tròn (C) có Pt: \(x^2+y^2-2x+4y-20=0\) và đường thẳng d: 4x-3y+5=0
a) Xác định tọa độ tâm và tính bán kính của (C)
b) Viết PT tiếp tuyến của (C) biết tiếp tuyến đó // với đường thẳng d
c) Viết PT đường thẳng d' sao cho d' song song với d và cắt đường tròn (C) tại hai điểm A, B sao cho AB=6