Giả sử x,y là những số không âm thỏa mãn điều kiện x2 + y2 = 1
Tìm giá trị nhỏ nhất của x + y
Giả sử x,y là những số không âm thỏa mãn điều kiện x2 + y2 = 1
Tìm giá trị nhỏ nhất, giá trị lớn nhất của x + y
ta có (x+y)2\(\le\)2(x2+y2)=2
=> x+y \(\le\)\(\sqrt{2}\)(vì x+y\(\ge\)0)
Dấu bằng xảy ra khi x=y=\(\frac{\sqrt{2}}{2}\)
Bất đẳng thức Cô-si có \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\):
\(x^2+y^2\ge2xy\Rightarrow2\ge x^2+y^2+2xy\Rightarrow x+y\le\sqrt{2}\)
Vậy : \(GTLN=\sqrt{2}\)
\(x^2+y^2=1\Rightarrow x^2+y^2+2xy=1+2xy\Rightarrow2xy=0\)
\(\Rightarrow\left(x+y\right)^2=1\Rightarrow x+y=1\)
Vậy : \(GTNN=1\)( VÌ GTNN của nó khi nó có đáp án thực sự )
Cho x,y là hai số không âm thỏa mãn x + y = 2. Tìm giá trị nhỏ nhất của biểu thức P = 1 3 x 3 + x 2 + y 2 - x + 1
A. 5
B. 7 3
C. 17 3
D. 115 3
Ta có x + y = 2 ⇒ y = 2 - x ≥ 0 ⇒ 0 ≤ x ≤ 2 . Thay y = 2 - x và biểu thức P ta được
P = 1 3 x 3 + x 2 + 2 - x 2 - x + 1 = 1 3 x 3 + 2 x 2 - 5 x + 5 = f x
với x ∈ 0 ; 2
Đạo hàm f ' x = x 2 + 4 x - 5 = 0 ⇔ x = 1 x = - 5
Do x ∈ 0 ; 2 nên loại x = -5
f 1 = 7 3 ; f 0 = 5 ; f 2 = 17 3
Vậy m i n x ∈ 0 ; 2 P = m i n x ∈ 0 ; 2 f x = 7 3 khi và chỉ khi x = 1
Đáp án B
Cho các số thực x,y không âm thỏa mãn điều kiện .Hãy tìm giá trị lớn nhất của biểu thức .
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$
$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$
Cho các số thực x, y không âm và thỏa mãn điều kiện: x 2 + y 2 ≤ 2 . Hãy tìm giá trị lớn nhất của biểu thức:
P = x 29 x + 3 y + y 29 y + 3 x
Áp dụng bất đẳng thức Cosi ta có:
1 32 32 x 29 x + 3 y ≤ 1 4 2 32 x + 29 x + 3 y 2 = 1 8 2 61 x + 3 y
Tương tự
1 32 32 y 29 y + 3 x ≤ 1 8 2 61 y + 3 x
=> P ≤ 4 2 x + y ≤ 4 2 x 2 + 1 2 + y 2 + 1 2 = 8 2
Vậy P min = 8 2 <=> x = y = 1
Cho x, y là hai số không âm thỏa mãn x + y =2. Giá trị nhỏ nhất của biểu thức P = 1 3 x 3 + x 2 + y 2 - x + 1 là
A. 17 3
B. 5
C. 115 3
D. 7 3
Cho x,y là hai số không âm thỏa mãn x+y=2. Giá trị nhỏ nhất của biểu thức P = 1 3 x 3 + x 2 + y 2 − x + 1 là:
A. min P = 7 3
B. min P = 5
C. min P = 17 3
D. min P = 115 3
Đáp án A
P = 1 3 x 3 + x 2 + y 2 − x + 1 = = 1 3 x 3 + x + y 2 − 2 x y − x + 1 = 1 3 x 3 + 4 − 2 x 2 − x − x + 1
⇒ P = 1 3 x 3 + 2 x 2 − 5 x + 5
xét hàm số P x trên 0 ; 2 ta có
P ' = x 2 + 4 x − 5 ⇒ P ' = 0 ⇔ x = 1
Ta tính các giá trị P 0 = 5 ; P 1 = 7 3 ; P 2 = 17 3 ⇒ M i n P = 7 3
Cho x, y là hai số không âm thỏa mãn x + y = 2. Giá trị nhỏ nhất của biểu thức
P
=
1
3
x
3
+
x
2
+
y
2
−
x
+
1
A. min P = 5
B. min P = 115 3
C. min P = 7 3
D. min P = 17 3
Chọn C.
Phương pháp:
Đưa biểu thức P về hàm số 1 ẩn x.
Khảo sát, tìm GTNN của hàm số đó.
Cách giải:
Cho x, y là hai số không âm thỏa mãn x+y=2 Giá trị nhỏ nhất của biểu thức
P = 1 3 x 3 + x 2 + y 2 - x + 1
A. 5
B. 115 3
C. 7 3
D. 17 3
Cho x, y là hai số không âm thỏa mãn x + y = 2. Giá trị nhỏ nhất của biểu thức P = 1 3 x 3 + x 2 + y 2 - x + 1
A. m i n P = 5
B. m i n P = 7 3
C. m i n P = 17 3
D. m i n P = 115 3