Lời giải:
Áp dụng BĐT Bunhiacopxky:
$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$
$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$
$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$
Cho các số thực x,y không âm thỏa mãn điều kiện \(x^2+y^2\le2\).Hãy tìm giá trị lớn nhất của biểu thức \(P=\sqrt{x\times(29x+3y)}+\sqrt{y\times(29y+3x)}\)
Cho các số thực x, y không âm và thỏa mãn điều kiện: x 2 + y 2 ≤ 2 . Hãy tìm giá trị lớn nhất của biểu thức:
P = x 29 x + 3 y + y 29 y + 3 x
cho các số thực x,y không âm và thảo mãn điều kiện \(x^2+y^2\le2\).Hãy tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{x.(29x+3y)}+\sqrt{y.(29y+3x)}\)
\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện: x^2+ y^2+x^2+x^2y^2+y^2z^2+z^2x^2=6. \text{Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}}\)\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}\)
Cho các số thực không âm x, y thay đổi và thỏa mãn x + y = 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = (4x2 + 3y)(4y2 + 3x) + 25xy.
Cho hai số thực không âm x và y thỏa mãn điều kiện \(x^2+y^2=1\).Hãy tìm giá trị lớn nhất của biểu thức:
\(A=xy+max\left\{x,y\right\}\)
Cho x, y, z là các số thực thỏa mãn điều kiện \(\frac{3x^2}{2}+y^2+z^2+yz=1\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức B = x + y + z
Giúp e vs plzz sắp thi vào 10 chuyên rồi
Cho x,y là các số thực thay đổi thỏa mãn điều kiện x2 +y2+xy=3.Tìm giá trị lớn nhất và nhỏ nhất của biểu thức x2+y2-xy
cho các số thực dương x,y thỏa mãn điều kiện x+y=2016.Tìm giá trị nhỏ nhất của biểu thức:
P=\(\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}+\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)