tính : \(0,2.\left(5x-3\right)-\dfrac{1}{2}.\left(\dfrac{2}{3}x+6\right)+\dfrac{2}{3}.\left(3-x\right)\)
câu 1 \(\dfrac{3\left(2x+1\right)}{4}\)-\(\dfrac{2\left(3x-1\right)}{5}\)=5
câu 2 \(\dfrac{5x-3}{6}\)+5-\(\dfrac{7x-1}{4}\)=\(\dfrac{x+2}{12}\)
câu 3 \(\dfrac{\left(x-1\right)\left(x+1\right)}{2}\)+\(\dfrac{3\left(x+1\right)}{4}\)=\(\dfrac{\left(x-2\right)^2}{2}\)
câu 4 \(\dfrac{\left(x-4\right)^3}{6}\)+1=\(\dfrac{x\left(x+1\right)}{2}\)-\(\dfrac{\left(x-5\right)\left(x+5\right)}{3}\)
câu 5 \(\dfrac{3\left(x+2\right)^3}{5}\)-\(\dfrac{\left(x-1\right)^2}{10}\)=\(\dfrac{\left(x-3\right)\left(x+3\right)}{2}\)
-Mình xin lỗi.Nhưng thầy mình chưa giảng về bài này và làm bài tập với lại thầy bắt phải làm nên ko cho điểm xấu nên các bạn giúp mình được ko.Mình cầu xin sự giúp đỡ của các bạn và cảm ơn rất nhiều ( các bạn biết câu nào làm câu đó nha <:{ )
Câu 1:
=>15(2x+1)-8(3x-1)=100
=>30x+15-24x+8=100
=>6x+23=100
hay x=77/6
Câu 2:
=>2(5x-3)+12-3(7x-1)=x+2
=>10x-6+12-21x+3-x-2=0
=>-12x=-7
hay x=7/12
Câu 3:
\(\Leftrightarrow2\left(x^2-1\right)+3\left(x+1\right)=2\left(x^2-4x+4\right)\)
\(\Leftrightarrow2x^2-2+3x+3-2x^2+8x-8=0\)
=>11x-7=0
hay x=-7/11
Câu 4:
(x - 4)^3/6 + 1 = x(x + 1)/2 - (x - 5)(x + 5)/3
<=> (x - 4)^3 + 6/6 = x^2 + x/2 - x^2 - 25/3
<=> (x - 4)^3 + 6/6 = 3x^2 + 3x - 2x^2 + 50/6
<=> (x - 4)^3 + 6 = 3x^2 + 3x - 2x^2 + 50
<=> x^3 - 12x^2 + 48x - 58 = x^2 + 3x + 50
<=> x^3 -13x^2 + 45x - 108 = 0
Đến đây bạn bấm máy nhẩm nghiệm là ra nhé
Câu 5:
3(x + 2)^3/5 - (x - 1)^2/10 = (x - 3)(x + 3)/2
<=> 6(x + 2)^3 - (x - 1)^2/10 = 5(x^2 - 9)/10
<=> 6(x + 2)^3 - (x - 1)^2 = 5(x^2 - 9)
<=> 6x^3 + 36x^2 + 72x + 48 - x^2 + 2x - 1 - 5x^2 + 45 = 0
<=> 6x^3 + 30x^2 + 74x + 92 = 0
Đến đây bạn bấm máy nhẩm nghiệm như câu 4 nhé
Giải các phương trình:
\(1.2x\left(x-3\right)+5\left(x-3\right)\)
\(2.\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
\(3.\dfrac{x}{2x-6}+\dfrac{x}{2x-2}=\dfrac{-2x}{\left(x+1\right)\left(3-x\right)}\)
\(1,\) thiếu đề
\(2,\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
\(\Leftrightarrow\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)}{30}-\dfrac{150}{30}\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow25x+10-80x+10=24x+12-150\)
\(\Leftrightarrow-55x+20=24x-138\)
\(\Leftrightarrow24x-138+55x-20=0\)
\(\Leftrightarrow79x-158=0\)
\(\Leftrightarrow x=2\)
\(3,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\\x\ne3\end{matrix}\right.\\ \dfrac{x}{2x-6}+\dfrac{x}{2x-2}=\dfrac{-2x}{\left(x+1\right)\left(3-x\right)}\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2\left(x-3\right)}+\dfrac{1}{2\left(x-1\right)}-\dfrac{2}{\left(x+1\right)\left(x-3\right)}\right)=0\)
\(\Leftrightarrow x\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4\left(x-1\right)}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)
\(\Leftrightarrow x\left(\dfrac{x^2-1}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{x^2-2x-3}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4x-4}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)
\(\Leftrightarrow x.\dfrac{x^2-1+x^2-2x-3-4x+4}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x.\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x.\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x.\dfrac{x}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow x=0\)
Bài 2 . Thực hiện phép tính
a)\(6x^3\)\(\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)\)\(-2x^5\)\(-x^3\)
b)\(\left(x-3\right)\left(x^2+3x-2\right)\)
c)\(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
a: =2x^5-15x^3-x^2-2x^5-x^3=-16x^3-x^2
b: =x^3+3x^2-2x-3x^2-9x+6
=x^3-11x+6
c: \(=\dfrac{4x^3+2x^2-6x^2-3x-2x-1+5}{2x+1}\)
\(=2x^2-3x-1+\dfrac{5}{2x+1}\)
a) \(6x^3\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)-2x^5-x^3\)
\(=6x^3\left(\dfrac{1}{3}x^2-\dfrac{16}{6}\right)-2x^5-x^3\)
\(=2x^5-16x^3-2x^5-x^3\)
\(=-17x^3\)
b) \(\left(x+3\right)\left(x^2+3x-2\right)\)
\(=x^3+3x^2-2x+3x^2+9x-6\)
\(=x^3+6x^2+7x-6\)
c) \(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
\(=2x^2+4x^3-2x-4x^2-\dfrac{5}{2}-5x+\dfrac{2}{x}+4\)
\(=4x^3-2x^2-7x+\dfrac{2}{x}+\dfrac{3}{2}\)
Thực hiện phép tính:
\(a,\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)
\(b,\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)
( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)
(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)
1/x +1/x+4
2x+4/x(x+4)
Câu b bạn tách các mẫu thành nhân tử rồi làm như câu a nhé
Tính
a)\(\left(\dfrac{\left(x-1\right)^2}{\left(3x+x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{x^2+x}{x^2+1}\)
b)\(\left(\dfrac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\dfrac{2x^2-x+10}{2\left(x^3+x^2+x+1\right)}\right):\left(\dfrac{5}{x^2+1}+\dfrac{3}{2\left(x+1\right)}-\dfrac{3}{2\left(x-1\right)}\right).\dfrac{2}{x-1}\)
c)\(\left(\dfrac{x^2}{x^2-5x+6}+\dfrac{x^2}{x^2-3x+2}\right):\dfrac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
Bài `1`: Rút gọn các biểu thức sau:
\(a)4x^2\left(5x^2+3\right)-6x\left(3x^3-2x+1\right)-5x^3\left(2x-1\right)\)
\(b)\dfrac{3}{2}x\left(x^2-\dfrac{2}{3}x+2\right)-\dfrac{5}{3}x^2\left(x+\dfrac{6}{5}\right)\)
Bài `2`: Thực hiện các phép nhân sau:
\(a)\left(x^2-x\right)\cdot\left(2x^2-x-10\right)\)
\(b)\left(0,2x^2-3x\right)\cdot5\left(x^2-7x+3\right)\)
\(c)6x^2\cdot\left(2x^3-3x^2+5x-4\right)\)
\(d)\left(-1,2x^2\right)\cdot\left(2,5x^4-2x^3+x^2-1,5\right)\)
Bài 2:
a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)
b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)
\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)
\(=x^4-22x^3+108x^2-45x\)
c: \(=12x^5-18x^4+30x^3-24x^2\)
d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)
1 , Tính : \(\dfrac{2}{3}.\left\{{}\begin{matrix}2\\3\end{matrix}\right.-\dfrac{2}{3}.\left[\dfrac{2}{3}-\dfrac{2}{3}.\left(\dfrac{2}{3}-\dfrac{1}{2}\right)\right]\) 2 Tìm x bik : \(0,2.\left(x-\dfrac{1}{2}\right)-0,2=x-1\)
1.
\(\dfrac{2}{3}.\left\{\dfrac{2}{3}-\dfrac{2}{3}.\left[\dfrac{2}{3}-\dfrac{2}{3}.\left(\dfrac{2}{3}-\dfrac{1}{2}\right)\right]\right\}\)
=\(\dfrac{2}{3}.\left\{\dfrac{2}{3}-\dfrac{2}{3}.\left[\dfrac{2}{3}-\dfrac{2}{3}.\dfrac{1}{6}\right]\right\}\)
=\(\dfrac{2}{3}.\left\{\dfrac{2}{3}-\dfrac{2}{3}.\left[\dfrac{2}{3}-\dfrac{1}{9}\right]\right\}\)
=\(\dfrac{2}{3}.\left\{\dfrac{2}{3}-\dfrac{2}{3}.\dfrac{5}{9}\right\}\)
=\(\dfrac{2}{3}.\left\{\dfrac{2}{3}-\dfrac{10}{27}\right\}\)
=\(\dfrac{2}{3}.\dfrac{8}{27}\)
=...
Tìm \(x\) biết:
\(\left(\sqrt{3}\right)^x=243\)
\(0,1^x=1000\)
\(\left(\dfrac{1}{2}\right)^x=1024\)
\(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
\(5^{x-1}+5^{x+2}=3\)
a: \(\left(\sqrt{3}\right)^x=243\)
=>\(3^{\dfrac{1}{2}\cdot x}=3^5\)
=>\(\dfrac{1}{2}\cdot x=5\)
=>x=10
b: \(0,1^x=1000\)
=>\(\left(\dfrac{1}{10}\right)^x=1000\)
=>\(10^{-x}=10^3\)
=>-x=3
=>x=-3
c: \(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
=>\(\left(0,2\right)^{x+3}< 0,2\)
=>x+3>1
=>x>-2
d: \(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
=>\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{3}{5}\right)^{-2}\)
=>2x+1<-2
=>2x<-3
=>\(x< -\dfrac{3}{2}\)
e: \(5^{x-1}+5^{x+2}=3\)
=>\(5^x\cdot\dfrac{1}{5}+5^x\cdot25=3\)
=>\(5^x=\dfrac{3}{25,2}=\dfrac{1}{8,4}=\dfrac{10}{84}=\dfrac{5}{42}\)
=>\(x=log_5\left(\dfrac{5}{42}\right)=1-log_542\)
Tính tổng sau:
a, \(\dfrac{-1}{x^2-x}+\dfrac{-1}{x^2-3x+2}+\dfrac{-1}{x^2-5x+6}+\dfrac{-1}{x^2-7x+12}+\dfrac{-1}{x^2-9x+20}+\dfrac{1}{x-5}\)
b, \(\dfrac{3}{x\left(x+3\right)}+\dfrac{3}{\left(x+3\right)\left(x+6\right)}+\dfrac{3}{\left(x+6\right)\left(x+9\right)}+\dfrac{1}{x+9}\)
a: \(=-\dfrac{1}{x\left(x-1\right)}+\dfrac{-1}{\left(x-1\right)\left(x-2\right)}+\dfrac{-1}{\left(x-2\right)\left(x-3\right)}+...+-\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{x-5}\)
\(=\dfrac{1}{x}-\dfrac{1}{x-1}+\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+...+\dfrac{1}{x-4}-\dfrac{1}{x-5}+\dfrac{1}{x-5}\)
=1/x
b: \(=\dfrac{1}{x}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+9}+\dfrac{1}{x+9}\)
=1/x
tính đạo hàm
a) \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}\)
b) \(y=x+3+\dfrac{4}{x+3}\) giải phương trình y'=0
c) \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\) tính y'(-1)
d) \(y=x-2+\dfrac{9}{x-2}\) giải phương trình y'=0
a:
ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)
\(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)
=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)
=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)
b:
ĐKXĐ: x<>-3
\(y=\left(x+3\right)+\dfrac{4}{x+3}\)
=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)
\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)
=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)
y'=0
=>\(\left(x+3\right)^2-4=0\)
=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)
=>(x+5)(x+1)=0
=>x=-5 hoặc x=-1
c:
ĐKXĐ: x<>-2
\(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)
=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)
=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)
\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)
d:
ĐKXĐ: x<>2
\(y=x-2+\dfrac{9}{x-2}\)
=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)
\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)
=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)
y'=0
=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)
=>\(\left(x-2\right)^2-9=0\)
=>(x-2-3)(x-2+3)=0
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1