Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
James Pham
Xem chi tiết
Đào Tùng Dương
25 tháng 2 2022 lúc 22:26

\(\Delta=\left(m-2\right)^2+8>0\) với mọi m . Vậy pt có 2 nghiệm phân biệt với mọi m 

Do : \(x_1x_2=-8\) nên \(x_2=\dfrac{-8}{x1}\)

\(Q=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\dfrac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\dfrac{16}{x_1^2}\right)\le68-4.8=36\)

\(\left(x_1^2+\dfrac{16}{x_1^2}\ge8\right)\)\(;Q=36\) khi và chỉ khi x1 = ( 2 ; -2 )

 

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 14:51

\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)

\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)

Khánh Hiền
Xem chi tiết
quang
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 4 2023 lúc 16:33

1:

\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)

\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)

Lam Khuê
Xem chi tiết
Hưởng T.
Xem chi tiết
tran hong anh
23 tháng 7 2021 lúc 9:06

còn cái nịt

Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 1 2023 lúc 22:03

a:Sửa đề: x^2-(m+1)x+2m-8=0

Khi m=2 thì (1) sẽ là x^2-3x-4=0

=>(x-4)(x+1)=0

=>x=4 hoặc x=-1

b: Δ=(-m-1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24>0

=>(1) luôn có hai nghiệm pb

\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2+4=11

=>m^2-2m=0

=>m=0 hoặc m=2

Nguyễn Thế Hiếu
Xem chi tiết
Lê Đức Hoàng Sơn
Xem chi tiết
Nguyen Thi Phung
23 tháng 6 2017 lúc 8:08

denta , =(m -1) -(m +1 )

=\(m^2-2m+1-m-1=m^2-3m\)

phương trình có hai nghiệm phân biệt 

\(\Leftrightarrow denta>0.\)

\(\Leftrightarrow m^2-3m>0\)

\(\Leftrightarrow m\left(m-3\right)>0\)

\(\Leftrightarrow m>3ho\text{ặ}cm< 0\)

lê thị bích ngọc
23 tháng 6 2017 lúc 9:09

m > - 1/3

Đinh Đức Hùng
9 tháng 12 2017 lúc 19:34

\(x^2+2\left(m-1\right)x+m+1=0\)

Có \(\Delta=4\left(m-1\right)^2-4\left(m+1\right)=4m^2-8m+4-4m-4=4m^2-12m\)

Để PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow4m^2-12m>0\)

\(\Leftrightarrow m\left(m-3\right)>0\Leftrightarrow0< m< 3\)

Vậy với \(0< m< 3\) thì phương trình trên có 2 nghiệm phân biệt

Lê Văn Hoàng
Xem chi tiết
Tuấn
14 tháng 1 2018 lúc 20:36

viet dc k bạn

Nguyễn Trãi
2 tháng 4 2018 lúc 17:33

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

Despacito
2 tháng 4 2018 lúc 17:43

\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\)   \(\left(#\right)\)

từ pt \(\left(#\right)\) ta có  \(\Delta'=\left[-\left(m-2\right)\right]^2-m^2-2m+3\)

\(\Delta'=m^2-4m+4-m^2-2m+3\)

\(\Delta'=-6m+7\)

để pt  \(\left(#\right)\) có 2 nghiệm \(x_1,x_2\) thì \(\Delta'>0\)

\(\Leftrightarrow-6m+7>0\)

\(\Leftrightarrow-6m>-7\)

\(\Leftrightarrow m< \frac{7}{6}\)

theo định lí vi et \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1.x_2=m^2+2m-3\end{cases}}\)

theo bài ra ta có \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

\(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)

\(\Leftrightarrow\left(x_1+x_2\right).5=\left(x_1.x_2\right)\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right).5-\left(x_1.x_2\right)\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(5-x_1.x_2\right)=0\)

\(\Leftrightarrow\left(2m-4\right)\left(5-m^2-2m+3\right)=0\)

\(\Leftrightarrow\left(2m-4\right)\left(m^2+2m-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2m-4=0\left(1\right)\\m^2+2m-8=0\left(2\right)\end{cases}}\)

từ \(\left(1\right)\)  ta có \(m=2\)  ( KTM ) 

từ \(\left(2\right)\) ta có \(m^2+2m-8=0\)  \(\left(3\right)\)

từ pt \(\left(3\right)\)  ta có \(\Delta'=1^2-\left(-8\right)=1+8=9>0\Rightarrow\sqrt{\Delta'}=3\)

vì \(\Delta'>0\)  nên pt \(\left(3\right)\)  có 2 nghiệm phân biệt \(m_1=-2+3=1\)  ;  ( TM ) 

 \(m_2=-2-3=-5\)  ( TM ) 

vậy \(m_1=-5;m_2=1\)  là các giá trị cần tìm