Cho phương trình: \(\frac{{x + 2}}{x} = \frac{{x - 3}}{{x - 2}}\,\,\left( 1 \right)\).
Tìm điều kiện của \(x\) để cả hai mẫu thức có trong phương trình (1) là khác 0.
Cho mẫu của cả hai phân thức rồi giải điều kiện.
Cho phương trình \(x^2-\left(m-2\right)x-8=0\), với m là tham số.
Tìm tất cả các giá trị của m để phương trình có hai nghiệm \(x_1,x_2\) sao cho biểu thức \(Q=\left(x^2_1-1\right)\left(x^2_2-4\right)\) có giá trị lớn nhất.
\(\Delta=\left(m-2\right)^2+8>0\) với mọi m . Vậy pt có 2 nghiệm phân biệt với mọi m
Do : \(x_1x_2=-8\) nên \(x_2=\dfrac{-8}{x1}\)
\(Q=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\dfrac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\dfrac{16}{x_1^2}\right)\le68-4.8=36\)
\(\left(x_1^2+\dfrac{16}{x_1^2}\ge8\right)\)\(;Q=36\) khi và chỉ khi x1 = ( 2 ; -2 )
Cho phương trình \(x^2-2\left(m+1\right)x+m^2+2m=0\) (với m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1,x2(x1<x2)
thoa man: \(\left|x1\right|=3\left|x2\right|\)
\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=m+1-1=m\\x_2=m+1+1=m+2\end{matrix}\right.\)
\(\left|x_1\right|=3\left|x_2\right|\Leftrightarrow\left|m\right|=3\left|m+2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3m+6=-m\\3m+6=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-3\end{matrix}\right.\)
1,Cho biểu thức M =( \(\frac{\sqrt{x}-2}{x-1}\)-\(\frac{\sqrt{x}+2}{x^{ }+2\sqrt{x}+1}\)) : \(\frac{2}{\left(1-x\right)^2}\)
a. Rút gọn M
b. Tìm giá trị lớn nhất của M
2.Cho phương trình x^2-mx+m+3=0 với m là tham số.
a. tìm tất cả giá trị của m để phương trình có hai nghiệm x1, x2 dương phân biệt hoặc trùng nhau. Khi đó giá trị nhỏ nhất của biểu thức:
M=\(\frac{x_1^2}{x_1-1}\)+\(\frac{x_2^2}{x_2-1}\)
b. Chứng minh rằng phương trình có hai nghiệm phân biệt đều lớn hơn 2 khi 6<m<7
c1: Rút gọn biểu thức A=\(\left(\dfrac{1}{x-2\sqrt{x}}-\dfrac{2}{6-3\sqrt{x}}\right):\left(\dfrac{2}{3}+\dfrac{1}{\sqrt{x}}\right)\)
c2: Cho phương trình: \(x^2-2\left(2m-1\right)x+m^2-4m=0\left(1\right)\)
Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 thoả mãn hệ thức \(x_1+x_2=\dfrac{-8}{x_1+x_2}\)
1:
\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)
\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU
Dạng 1. TÌM ĐIỀU KIỆN XÁC ĐỊNH CỦA MỘT PHƯƠNG TRÌNH.
Bài 1. Tìm điều kiện xác định của các phương trình:
a) \(\frac{7x}{x+4}-\frac{x-3}{x-1}=\frac{x-5}{8}\) b) \(\frac{x+6}{5\left(x-2\right)}-\frac{x-1}{3\left(x+2\right)}=\frac{4}{x^2-4}\)
Dạng 2. GIẢI PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU
Bài 2. Giải phương trình sau:
a) \(\frac{4x-3}{x-5}=\frac{29}{3}\)
b) \(\frac{2x-1}{5-3x}=2\)
c) \(\frac{7}{x+2}=\frac{3}{x-5}\)
Bài 3. Giải phương trình sau:
a) \(\frac{x+5}{3\left(x-1\right)}+1=\frac{3x+7}{5\left(x-1\right)}\)
b) \(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x+5}{x\left(x-5\right)}\)
c) \(\frac{11}{x}=\frac{9}{x+1}+\frac{2}{x-4}\)
Dạng 3. TÌM GIÁ TRỊ CỦA BIẾN ĐỂ GIÁ TRỊ CỦA HAI BIỂU THỨC CÓ MỐI LIÊN QUAN NÀO ĐÓ.
Bài 4. Cho hai biểu thức \(A=\frac{3}{3x+1}+\frac{2}{1-3x}\); \(B=\frac{x-5}{9x^2-1}\)với giá trị nào của x thì hai biểu thức A và B có cùng một giá trị ?
Dạng 4:PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU CHỨA THAM SỐ
Bài 5. Cho phương trình (ẩn x): \(\frac{x+k}{k-x}-\frac{x-k}{k+x}=\frac{k\left(3k+1\right)}{k^2-x^2}\)
a) Giải phương trình với \(k=1\)
b) Giải phương trình với \(k=0\)
c) Tìm các giá trị của k sao cho phương trình nhận \(x=\frac{1}{2}\)làm nghiệm.
a)Cho phương trình : (m+2)x^2 - (2m-1)x-3+m=0 tìm điều kiện của m để phương trình có hai nghiệm phân biệt x1, x2 sao cho nghiệm này gấp đôi nghiệm kia
b)Cho phương trình bậc hai: x^2-mx+m-1=0. Tìm m để phương trình có hai nghiệm x1;x2 sao cho biểu thức R=2x1x2+3/x1^2+x2^2+2(1+x1x2) đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
c)Định m để hiệu hai nghiệm của phương trình sau đây bằng 2
mx^2-(m+3)x+2m+1=0
Mọi người giúp em giải chi tiết ra với ạ. Em cảm ơn!
Cho phương trình \(x^2-\left(m+1\right)x+2-8=0\) (1), m là tham số.
a) giải phương trình (1) khi m=2.
b) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn
\(x^2_1+x_2^2+\left(x1-2\right)\left(x2-2\right)=11\)
a:Sửa đề: x^2-(m+1)x+2m-8=0
Khi m=2 thì (1) sẽ là x^2-3x-4=0
=>(x-4)(x+1)=0
=>x=4 hoặc x=-1
b: Δ=(-m-1)^2-4(2m-8)
=m^2+2m+1-8m+32
=m^2-6m+33
=(m-3)^2+24>=24>0
=>(1) luôn có hai nghiệm pb
\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)
=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11
=>(m+1)^2-(2m-8)-2(m+1)+4=11
=>m^2+2m+1-2m+8-2m-2+4=11
=>m^2-2m=0
=>m=0 hoặc m=2
cho phương trình\(x^2-\left(2m+1\right)x+m^2-m=0\) tìm các giá tri của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:\(\left(x_1^2+mx_1+x_2-m^2+m\right)\left(x_2^2+mx_2+x_1-m^2+m\right)=-9\)
Cho phương trình \(x^2+2\left(m-1\right)x+m+1=0\)với m là tham số . Tìm tất cả các giá trị của m để phương trình có đúng hai nghiệm phân biệt .
denta , =(m -1) -(m +1 )
=\(m^2-2m+1-m-1=m^2-3m\)
phương trình có hai nghiệm phân biệt
\(\Leftrightarrow denta>0.\)
\(\Leftrightarrow m^2-3m>0\)
\(\Leftrightarrow m\left(m-3\right)>0\)
\(\Leftrightarrow m>3ho\text{ặ}cm< 0\)
\(x^2+2\left(m-1\right)x+m+1=0\)
Có \(\Delta=4\left(m-1\right)^2-4\left(m+1\right)=4m^2-8m+4-4m-4=4m^2-12m\)
Để PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow4m^2-12m>0\)
\(\Leftrightarrow m\left(m-3\right)>0\Leftrightarrow0< m< 3\)
Vậy với \(0< m< 3\) thì phương trình trên có 2 nghiệm phân biệt
Cho phương trình
\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\)
Tìm các giá trị của m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn \(\frac{1}{x1}+\frac{1}{x2}=\frac{x1+x2}{5}\)
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)
\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\) \(\left(#\right)\)
từ pt \(\left(#\right)\) ta có \(\Delta'=\left[-\left(m-2\right)\right]^2-m^2-2m+3\)
\(\Delta'=m^2-4m+4-m^2-2m+3\)
\(\Delta'=-6m+7\)
để pt \(\left(#\right)\) có 2 nghiệm \(x_1,x_2\) thì \(\Delta'>0\)
\(\Leftrightarrow-6m+7>0\)
\(\Leftrightarrow-6m>-7\)
\(\Leftrightarrow m< \frac{7}{6}\)
theo định lí vi et \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1.x_2=m^2+2m-3\end{cases}}\)
theo bài ra ta có \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
\(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)
\(\Leftrightarrow\left(x_1+x_2\right).5=\left(x_1.x_2\right)\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right).5-\left(x_1.x_2\right)\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1+x_2\right).\left(5-x_1.x_2\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left(5-m^2-2m+3\right)=0\)
\(\Leftrightarrow\left(2m-4\right)\left(m^2+2m-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2m-4=0\left(1\right)\\m^2+2m-8=0\left(2\right)\end{cases}}\)
từ \(\left(1\right)\) ta có \(m=2\) ( KTM )
từ \(\left(2\right)\) ta có \(m^2+2m-8=0\) \(\left(3\right)\)
từ pt \(\left(3\right)\) ta có \(\Delta'=1^2-\left(-8\right)=1+8=9>0\Rightarrow\sqrt{\Delta'}=3\)
vì \(\Delta'>0\) nên pt \(\left(3\right)\) có 2 nghiệm phân biệt \(m_1=-2+3=1\) ; ( TM )
\(m_2=-2-3=-5\) ( TM )
vậy \(m_1=-5;m_2=1\) là các giá trị cần tìm