Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Trang
Xem chi tiết
Trần Đăng Nhất
10 tháng 4 2020 lúc 17:29

Cách làm như trên là không sai, tuy nhiên để chặt chẽ hơn bạn có thể làm như thế này:

Ta có:\(\left\{{}\begin{matrix}4a>4b\\-2>-3\end{matrix}\right.\), cộng 2 vế của bất phương trình ta được \(4a-2>4b-3\left(ĐPCM\right)\)

Nguyễn Linh Chi
Xem chi tiết
Akai Haruma
24 tháng 8 2021 lúc 0:05

Lời giải:
a.

\(\overline{abc}=100a+10b+c\)

Vì $a,b$ là số chẵn nên $100a\vdots 4; 10b\vdots b$

Mà $\overline{abc}=100a+10b+c\vdots 4$

$\Rightarrow c\vdots 4$

(đpcm)

b.

$\overline{bac}=100b+10a+c$

$=100a+10b+c+(90b-90a)=\overline{abc}+90(b-a)$

Vì $b,a$ chẵn nên $b-a$ chẵn

$\Rightarrow 90(b-a)=45.2(b-a)\vdots 4$

Kết hợp với $\overline{abc}\vdots 4$

Do đó: $\overline{bac}=\overline{abc}+90(b-a)\vdots 4$

(đpcm)

 

Nguyễn Linh Chi
Xem chi tiết
ILoveMath
24 tháng 8 2021 lúc 8:52

Tham khảo: https://olm.vn/hoi-dap/detail/67971789293.html

Hùng Chu
Xem chi tiết
Akai Haruma
25 tháng 7 2021 lúc 10:03

Lời giải:

Xét hiệu $3-4b-(2-4a)=1+4(a-b)>0$ do $1>0$ và $4(a-b)>0$ khi $a>b$

$\Rightarrow 3-4b> 2-4a$ (đpcm)

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 23:28

Ta có: a>b

nên -4a<-4b

\(\Leftrightarrow-4a+2< -4b+2\)

mà -4b+2<-4b+3

nên -4a+2<-4b+3(đpcm)

Mai Phạm Nhã Ca
Xem chi tiết
Hải Ninh
9 tháng 4 2017 lúc 11:06

a) \(a< b\Rightarrow4a< 4b\Rightarrow4a+1< 4b+1\)

\(4b+1< 4b+3\)

\(\Rightarrow4a+1< 4b+3\)

b) \(a< b\Rightarrow-5a>-5b\Rightarrow-5a-1>-5b-1\)

\(-5b-1>-5b-4\)

\(\Rightarrow-5a-1>-5b-4\)

Mai Phạm Nhã Ca
Xem chi tiết
The Silent Man
9 tháng 4 2017 lúc 11:38

dễ mà

The Silent Man
9 tháng 4 2017 lúc 11:41

ta có:\(a< b\Rightarrow4a< 4b\)\(1< 3\)

\(\Rightarrow4a+1< 4b+3\)

Câu b tương tự nhưng nhớ đổi dấu khi nhân vs số âm

ngonhuminh
9 tháng 4 2017 lúc 13:21

Nhân số (-) cho phức tạp

b)

-5a-1>-5b-4

<=>-5a+5b>1-4

<=>5(b-a)>-3

a<b=> b-a> 0

=>5(b-a)>0>-3 --> dpcm

Bà Đầm Già
Xem chi tiết
Ngô Ngọc Anh
24 tháng 4 2019 lúc 7:26

a) Ta có: a>b => 2a > 2b  (nhân 2 vế với 2)

                     => 2a - 3 > 2b - 3 (cộng 2 vế với -3)

b) Ta có: -4a+1 < -4b+ 1 => -4a < -4b ( cộng 2 vế với -1)

                                       => a > b (nhân 2 vế với -1/4)

c) Ta có: 3-4a < 5c+2 => 3-4a-3 < 5c+2-3 (cộng 2 vế với -3)

                                  => -4a < 5c-1

Mà 5c-1 < -4b nên -4a < -4b => a > b (nhân cả 2 vế với -1/4)

Iruto Kawasano
Xem chi tiết
Minh Phương
2 tháng 5 2023 lúc 9:16

a. Ta có: a > b

4a > 4b ( nhân cả 2 vế cho 4)

4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)

b. Ta có: a > b

-2a < -2b ( nhân cả 2 vế cho -2)

1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)

d. Ta có: a < b 

-2a > -2b ( nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)

 

Bla bla bla
Xem chi tiết
Akai Haruma
29 tháng 11 2023 lúc 18:28

Lời giải:
$a^4-4a=b^4-4b$

$\Leftrightarrow (a^4-b^4)-(4a-4b)=0$

$\Leftrightarrow (a-b)(a+b)(a^2+b^2)-4(a-b)=0$

$\Leftrightarrow (a-b)[(a+b)(a^2+b^2)-4]=0$

$\Rightarrow (a+b)(a^2+b^2)-4=0$ (do $a-b\neq 0$ với mọi $a,b$ phân biệt)

$\Rightarrow (a+b)(a^2+b^2)=4>0$

Mà $a^2+b^2>0$ với mọi $a,b$ phân biệt nên $a+b>0$

Mặt khác:

Áp dụng BĐT AM-GM:

$4=(a+b)(a^2+b^2)\geq (a+b).\frac{(a+b)^2}{2}$

$\Rightarrow 8> (a+b)^3$

$\Rightarrow 2> a+b$

Vậy $0< a+b< 2$ 

Ta có đpcm.

 

Đặng Minh Anh
Xem chi tiết