(x - 2)^4 = 81
4x-5 = 16
45 - 2x-1 =29
(2+x)2 = 144
(x-5)2 = 81
(13-x)4 = 81
\(4^{x-5}=16\)
\(4^{x-5}=4^2\)
\(x-5=2\)
\(x=2+5\)
\(x=7\)
\(45-2^{x-1}=29\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
\(\left(2+x\right)^2=144\)
\(\left(2+x\right)^2=12^2\)
\(2+x=12\)
\(x=12-2\)
\(x=10\)
\(\left(x-5\right)^2=81\)
\(\left(x-5\right)^2=9^2\)
\(x-5=9\)
\(x=14\)
\(\left(13-x\right)^4=81\)
\(\left(13-x\right)^4=3^4\)
\(13-x=3\)
\(x=13-3\)
\(x=10\)
\(...4^{x-5}=4^2\Rightarrow x-5=2\Rightarrow x=7\)
\(...2^{x-1}=45-29=16\Rightarrow2^{x-1}=2^4\Rightarrow x-1=4\Rightarrow x=5\)
\(...\Rightarrow\left(2+x\right)^2=12^2\Rightarrow\left[{}\begin{matrix}2+x=12\\2+x=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-14\end{matrix}\right.\)
\(...\Rightarrow\left(x-5\right)^2=9^2\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
\(...\Rightarrow\left(13-x\right)^4=3^4\Rightarrow\left[{}\begin{matrix}13-x=3\\13-x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=16\end{matrix}\right.\)
Mình quên mũ 2 với mũ 4 là chia ra 2 trường hợp, sửa lại nhé:
\(\left(2+x\right)^2=144\)
\(\left(2+x\right)^2=12^2\)
Th1:
\(2+x=12\)
\(x=10\)
Th2:
\(2+x=-12\)
\(x=-14\)
\(\left(x-5\right)^2=81\)
\(\left(x-5\right)^2=9^2\)
Th1:
\(x-5=9\)
\(x=14\)
Th2:
\(x-5=-9\)
\(x=-4\)
\(\left(13-x\right)^4=81\)
\(\left(13-x\right)^4=3^4\)
Th1:
\(13-x=3\)
\(x=10\)
Th2:
\(13-x=-3\)
\(x=16\)
1) Cho đa thức \(f\left(x\right)=x^{14}-14.x^{13}+14.x^{12}-...+13.x^2-14.x+14\) Tính f(13)
2) Tính : \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2000}}{2003}-81\right)\)
Bài 2:
x=13 nên x+1=14
\(f\left(x\right)=x^{14}-x^{13}\left(x+1\right)+x^{12}\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+14\)
\(=x^{14}-x^{14}-x^{13}+x^{13}-...+x^3+x^2-x^2-x+14\)
=14-x=1
x=13 nên x+1=14
f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14f(x)=x14−x13(x+1)+x12(x+1)−...+x2(x+1)−x(x+1)+14
=x14−x14−x13+x13−...+x3+x2−x2−x+14=x14−x14−x13+x13−...+x3+x2−x2−x+14
=14-x=1
Tính :
a) (3/4 - 81) (3^2/5 - 81) (3^3/6 - 81)...(3^2000/2003-81)
b) Tính giá trị biểu thức: 6x^2+5x-2 tại x thỏa mãn | x-2 |=1
c) tìm x,y nguyên biết x/3-4/y=1/5
THỨ NĂM MIK NỘP RỒI AI GIẢI GIÚP MIK VỚI NHANH NHÉ!!!@@@...
1) a) Tính (3/4-81)(3^2/5-81)(3^3/6-81)..(3^2000/2003-81)
b) Tính giá trị của biểu thức: 6x^2+5x-2 tại x thõa mãn |x-2|=1
2) Tìm giá trị nguyên lớn nhất của biểu thức MN=15-x/5-x ?
Gía trị của biểu thức:(3/4-81)x(32/5-81)x...x(32014/2014-81)=?
tìm x
(X+2/9)^2=4/81
\(\left(x+\dfrac{2}{9}\right)^2=\dfrac{4}{81}\\ \left(x+\dfrac{2}{9}\right)^2=\left(\dfrac{2}{9}\right)^2\\ x+\dfrac{2}{9}=\dfrac{2}{9}\\ x=\dfrac{2}{9}-\dfrac{2}{9}\\ x=0\)
Mình bổ sung thêm TH2 nữa.
\(\left(x+\dfrac{2}{9}\right)^2=\left(-\dfrac{2}{9}\right)^2\\ x+\dfrac{2}{9}=-\dfrac{2}{9}\\ x=-\dfrac{2}{9}-\dfrac{2}{9}\\ x=-\dfrac{4}{9}\)
\(...\Rightarrow\left(x+\dfrac{2}{9}\right)^2=\left(\dfrac{2}{9}\right)^2\)
\(\Rightarrow x+\dfrac{2}{9}=\dfrac{2}{9}\Rightarrow x=0\)
2^x_2 = 128
4^x : 4³ =16
2^x : 3 = 48
3^x-5 = 81
\(2^x\cdot2=128\)
\(\Rightarrow2^x=128:2\)
\(\Rightarrow2^x=64\)
\(\Rightarrow2^x=2^6\)
\(\Rightarrow x=6\)
==============
\(4^x:4^3=16\)
\(\Rightarrow4^{x-3}=16\)
\(\Rightarrow4^{x-3}=4^2\)
\(\Rightarrow x-3=2\)
\(\Rightarrow x=3+2=5\)
=============
\(2^x:3=48\)
\(\Rightarrow2^x=48:3\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
==============
\(3^{x-5}=81\)
\(\Rightarrow3^{x-5}=3^4\)
\(\Rightarrow x-5=4\)
\(\Rightarrow x=4+5\)
\(\Rightarrow x=9\)
2ˣ⁻² = 128
2ˣ⁻² = 2⁷
x - 2 = 7
x = 7 + 2
x = 9
Các câu còn lại xem bài bạn Phong
Tìm x biết
(3 x 23 x 814 x 9 - 480 x 45 x 2433):(72 x 612 x 45 - 4322 x 812 x 8)
(x + 2)4 = 81
\(\left(x+2\right)^4=81\)
\(\Rightarrow\left(x+2\right)^4=3^4\)
\(\Rightarrow\left[{}\begin{matrix}x+2=3\\x+2=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3-2\\x=-3-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Vậy \(S=\left\{1;-5\right\}\)
\(\left(x+2\right)^4=81\\ \Leftrightarrow\left(x+2\right)^4=3^4\\ \Leftrightarrow\left[{}\begin{matrix}-x-2=3\\x+2=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Vậy...
(x-2)^4=81
(x-2)^4=3^4
=>x-2=3
x=3+2
x=5
\(\)Vậy x=5