Tương tự HĐ1, em hãy quy đồng mẫu hai phân số \(\dfrac{{ - 3}}{5}\) và \(\dfrac{{ - 1}}{2}\)
Để thực hiện phép cộng \(\dfrac{5}{7} + \dfrac{{ - 3}}{4}\), em hãy làm theo các bước sau:
+ Quy đồng mẫu hai phân số \(\dfrac{5}{7}\) và \(\dfrac{{ - 3}}{4}\)
+ Sử dụng quy tắc cộng hai phân số cùng mẫu để tính tổng hai phân số sau khi đã quy đồng.
Ta có: \(\dfrac{5}{7} = \dfrac{{5.4}}{{7.4}} = \dfrac{{20}}{{28}}\) và \(\dfrac{{ - 3}}{4} = \dfrac{{ - 3.7}}{{4.7}} = \dfrac{{ - 21}}{{28}}\)
Như vậy, \(\dfrac{{20}}{{28}} + \dfrac{{ - 21}}{{28}} = \dfrac{{20 + \left( { - 21} \right)}}{{28}} = \dfrac{-1}{{28}}\)
a) Quy đồng mẫu số rồi so sánh hai phân số:
b) Viết các số sau theo thứ tự từ bé đến lớn:
\(\dfrac{3}{5},\dfrac{8}{5}\) và \(\dfrac{2}{5}\) \(\dfrac{5}{2},\dfrac{1}{6}\) và 1
a)
\(\dfrac{5}{9}< \dfrac{9}{9}\)
\(\dfrac{8}{7}>\dfrac{7}{7}\)
\(\dfrac{9}{9}=1\)
\(\dfrac{18}{4}>\dfrac{3}{4}\)
b)
\(\dfrac{2}{5},\dfrac{3}{5},\dfrac{8}{5}\)
\(\dfrac{5}{2}=\dfrac{15}{6},\dfrac{1}{6},1=\dfrac{6}{6}\rightarrow\dfrac{1}{6},\dfrac{6}{6},\dfrac{15}{6}\)
Quy đồng mẫu số hai phân số \(\dfrac{2}{3}\) và \(\dfrac{5}{12}\) ( chọn \(12\) là mẫu số chung (MSC) để quy đồng mẫu số hai phân số trên)
`2/3=`\(\dfrac{2\times4}{3\times4}\)`=8/12` và `5/12`
Vì mẫu số chung là \(12\) nên phân số \(\dfrac{5}{12}\) không phải quy đồng .
Ta thấy \(12\div3=4\) vậy cả tử số và mẫu số của phân số \(\dfrac{2}{3}\) nhân với \(4\)
Ta có :
\(\dfrac{2}{3}=\dfrac{2\times4}{3\times4}=\dfrac{8}{12}\)
Vậy hai phân số đó là : \(\dfrac{8}{12}\) và \(\dfrac{5}{12}\)
quy đồng mẫu thức các phân thức a) \(\dfrac{1}{2x^3y}\):\(\dfrac{2}{3xy^2z^3}\):\(\dfrac{5}{4yz}\)
b) \(\dfrac{x+1}{10x^3-40x}\) và \(\dfrac{5}{8x^3+16x^2}\)
bài 2 áp dụng quy tắc đổi dấu hãy quy đồng mẫu thức các phân thức
\(\dfrac{2-x}{3x-3x^2}\) và \(\dfrac{x^2-2}{4x^5-4x^2}\)
giúp mik với mik cần gấp
quy đồng mẫu thức các phân thức a) \(\dfrac{1}{2x^3y}:\) \(\dfrac{2}{3xy^2z^3}\):\(\dfrac{5}{4yz}\)
b) \(\dfrac{x+1}{10x^3-40x}\) và \(\dfrac{5}{8x^3+16x^2}\)
bài 2 áp dụng quy tắc đổi dấu hãy quy đồng mẫu thức các phân thức
\(\dfrac{2-x}{3x-3x^2}\) và \(\dfrac{x^2-2}{4x^5-4x^2}\)
Bài 2:
a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)
\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)
Em hãy nhắc lại quy tắc trừ hai phân số cùng mẫu (cả tử và mẫu đều dương) đã học rồi tính các hiệu sau: \(\dfrac{7}{{13}} - \dfrac{5}{{13}}\) và \(\dfrac{3}{4} - \dfrac{1}{5}\)
* Quy tắc trừ hai phân số cùng mẫu: Muốn trừ 2 phân số có cùng mẫu số, ta lấy tử số của phân số thứ nhất trừ đi tử số của phân số thứ hai và giữ nguyên mẫu.
* Ta có: \(\dfrac{7}{{13}} - \dfrac{5}{{13}} = \dfrac{{7 - 5}}{{13}} = \dfrac{2}{{13}}\) và \(\dfrac{3}{4} - \dfrac{1}{5} = \dfrac{{15}}{{20}} - \dfrac{4}{{20}} = \dfrac{{15 - 4}}{{20}} = \dfrac{{11}}{{20}}\)
Quy đồng mẫu số rồi so sánh hai phân số:
a) \(\dfrac{3}{4}\) và \(\dfrac{5}{16}\) b) \(\dfrac{1}{3}\) và \(\dfrac{2}{9}\) c) \(\dfrac{7}{18}\) và \(\dfrac{5}{6}\)
a) \(\dfrac{3}{4}=\dfrac{3\times4}{4\times4}=\dfrac{12}{16}\)
b) \(\dfrac{1}{3}=\dfrac{1\times3}{3\times3}=\dfrac{3}{9}\)
c) \(\dfrac{5}{6}=\dfrac{5\times3}{6\times3}=\dfrac{15}{18}\)
Để giải quyết bài toán mở đầu, ta cần so sánh \(\dfrac{3}{4}\) và \(\dfrac{5}{6}\). Em hãy thực hiện các yêu cầu sau:
• Viết hai phân số trên về hai phân số có cùng một mẫu dương bằng cách quy đồng mẫu số.
• So sánh hai phân số cùng mẫu vừa nhận được. Từ đó kết luận về phần bánh còn lại của hai bạn Vuông và Tròn
+ Quy đồng mẫu các phân số: \(\dfrac{3}{4}\) và \(\dfrac{5}{6}\):
\(BCNN\left( {6,4} \right) = 12\)
Thừa số phụ: \(12:4 = 3; 12:6=2\)
Ta có: \(\dfrac{3}{4} = \dfrac{{3.3}}{{4.3}} = \dfrac{9}{{12}}\\\dfrac{5}{6} = \dfrac{{5.2}}{{6.2}} = \dfrac{{10}}{{12}}\)
+ So sánh hai phân số cùng mẫu:
Vì 9 < 10 nên \(\dfrac{9}{{12}} < \dfrac{{10}}{{12}}\) nên \(\dfrac{3}{4} < \dfrac{5}{6}\).
Em hãy nhắc lại quy tắc chia hai phân số có tử và mẫu đều dương, rồi tính \(\dfrac{3}{4}:\dfrac{2}{5}\).
* Quy tắc chia hai phân số có tử mẫu đều dương: Lấy số bị chia nhân với phân số nghịch đảo của số chia.
\(\dfrac{3}{4}:\dfrac{2}{5} = \dfrac{3}{4}.\dfrac{5}{2} = \dfrac{{3.5}}{{4.2}} = \dfrac{{15}}{8}\)
Quy tắc chia hai phân số có tử mẫu đều dương: Lấy số bị chia nhân với phân số nghịch đảo của số chia.8