Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 7:42

a: ĐKXĐ: \(cosx-1\ne0\)

=>\(cosx\ne1\)

=>\(x\ne k2\Omega\)

b: ĐKXĐ: sin x-1>=0

=>sin x>=1

mà \(-1< =sinx< =1\)

nên sin x=1

=>\(x=\dfrac{\Omega}{2}+k2\Omega\)

c:

-1<=sin x<=1

=>-1+1<=sin x+1<=1+1

=>0<=sin x+1<=2

ĐKXĐ: \(\dfrac{1+sinx}{1-cosx}>=0\)

mà \(1+sinx>=0\)(cmt)

nên \(1-cosx>0\)

=>\(cosx< 1\)

mà -1<=cosx<=1

nên \(cosx\ne1\)

=>\(x\ne k2\Omega\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 19:51

loading...  

Thiên Yết
Xem chi tiết
Nhi Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 22:02

1: ĐKXĐ: 3-cosx>0

=>cosx<3(luôn đúng)

2: ĐKXĐ: 1-sin 3x>=0

=>sin 3x<=1(luôn đúng)

3: ĐKXĐ: sin x<>0 và 2x<>pi/2+kpi

=>x<>kpi và x<>pi/4+kpi/2

4: ĐKXĐ: 2x-1>=0

=>x>=1/2

nguyen ngoc son
Xem chi tiết
2611
2 tháng 10 2023 lúc 22:57

Ta có:

`@-1 <= sin x <= 1`

  `<=>0 <= 1+sin x <= 2=>1+sin x >= 0`

`@-1 <= cos x <= 1`

`<=>1 >= -cos x >= -1`

`<=>2 >= 1-cos x >= 0=>1-cos x >= 0`

Hàm số xác định `<=>[1+sin x]/[1-cos x] >= 0`

     `<=>{(1+sin x >= 0(L Đ)),(1-cos x > 0):}<=>1-cos x ne 0<=>x ne k2\pi (k in ZZ)`

   `=>TXĐ: D=R\\{k2\pi| k in ZZ}`.

Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 6 2021 lúc 15:27

1.

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

2.

ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

3. 

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Ái Nữ
6 tháng 6 2021 lúc 20:59

câu 2 ..... \(\dfrac{cos^22x}{sin^22x}=cot^22x\) nên suy ra sin2x khác 0 đúng hơm

còn câu 3, tui ko hiểu chỗ sin(2x-pi/4).. sao ở đây rớt xuống dợ

Lê Thúy Kiều
Xem chi tiết
Hồng Phúc
25 tháng 6 2021 lúc 9:40

1. \(D=R\)

2. \(sinx\ne0\Leftrightarrow x\ne k\pi\Rightarrow D=R\backslash\left\{k\pi|k\in R\right\}\)

3. \(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\Rightarrow D=R\backslash\left\{\dfrac{\pi}{4}+\dfrac{k\pi}{2}|k\in R\right\}\)

4. \(cos\left(x+\dfrac{\pi}{4}\right)\ne0\Leftrightarrow x+\dfrac{\pi}{4}\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+k\pi\Rightarrow D=R\backslash\left\{\dfrac{\pi}{4}+k\pi|k\in R\right\}\)

vvvvvvvv
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 6 2021 lúc 20:18

a.

\(\Leftrightarrow m-cosx\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge max\left(cosx\right)\)

\(\Leftrightarrow m\ge1\)

b.

\(\Leftrightarrow2sinx-m\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\le2sinx\) ; \(\forall x\)

\(\Leftrightarrow m\le\min\limits_{x\in R}\left(2sinx\right)\)

\(\Leftrightarrow m\le-2\)

c.

\(\Leftrightarrow cosx+m\ne0\) ; \(\forall x\)

\(\Leftrightarrow\left[{}\begin{matrix}m>\max\limits_R\left(cosx\right)\\m< \min\limits_R\left(cosx\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

Dương Nguyễn
Xem chi tiết