tìm x,y ϵ Z : \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
Tìm x, y ϵ Z.
\(\dfrac{4}{x}-\dfrac{y}{2}=\dfrac{1}{4}\)
\(\dfrac{4}{x}-\dfrac{y}{2}=\dfrac{1}{4}\Leftrightarrow\dfrac{8-xy}{2x}=\dfrac{1}{4}\Leftrightarrow\dfrac{16-2xy}{4x}=\dfrac{x}{4x}\)
\(\Rightarrow16-2xy=x\Leftrightarrow x+2xy=16\Leftrightarrow x\left(1+2y\right)=16\)
\(\Rightarrow x;1+2y\inƯ\left(16\right)=\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
x | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 | 16 | -16 |
2y + 1 | 16 | -16 | 8 | -8 | 4 | -4 | 2 | -2 | 1 | -1 |
y | 15/2 ( ktm ) | -17/2 ( ktm ) | 7/2 ( ktm ) | -9/2 ( ktm ) | 3/2 ( ktm ) | -5/2 ( ktm ) | 1/2 ( ktm ) | -3 / 2 ( ktm ) | 0 | -1 |
5, Tìm x, y ϵ Z, sao cho:
a) y = \(\dfrac{6x-4}{2x+3}\) b) \(\dfrac{1}{x}-\dfrac{y}{2}=\dfrac{1}{4}\)
c) xy-3x+2y=5 d) (3x-5)(2x+1)=12
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
12) Tìm x, y ϵ Z, sao cho:
a) \(\dfrac{x}{2}\) - \(\dfrac{1}{y}\)= \(\dfrac{1}{3}\)
b) \(\dfrac{4}{x}\) + \(\dfrac{y}{2}\) = \(\dfrac{-1}{4}\)
Tìm x,y ϵ Z biết: \(\dfrac{5}{x}\)- \(\dfrac{y}{3}\)= \(\dfrac{1}{6}\)
Lời giải:
$\frac{5}{x}-\frac{y}{3}=\frac{1}{6}$
$\Rightarrow \frac{15-xy}{3x}=\frac{1}{6}$
$\Rightarrow \frac{2(15-xy)}{6x}=\frac{x}{6x}$
$\Rightarrow 2(15-xy)=x$
$\Rightarrow 30=2xy+x$
$\Rightarrow 30=x(2y+1)$
$\Rightarrow x=\frac{30}{2y+1}$
Vì $x$ nguyên nên $\frac{30}{2y+1}$ nguyên
$\Rightarrow 2y+1$ là ước của $30$
Vì $2y+1$ lẻ nên $2y+1\in\left\{\pm 1; \pm 3; \pm 5; \pm 15\right\}$
$\Rightarrow y\in\left\{-1; 0; -2; 1; -3; 2; -8; 7\right\}$
Tương ứng với các giá trị $y$ trên ta có: $x\in\left\{-30; 30; -10; 10; -6; 6; -2;2\right\}$
Tìm x ϵ Z biết:
\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
`-1/5<=x/8<=1/4`
`=>8* -1/5<=x<=1/4*8`
`=>-8/5<=x<=2`
Mà `x in ZZ`
`=>x in {-1,0,1,2}`
−1/5≤x8≤1/4-15≤x8≤14
⇒8⋅−1/5≤x≤14⋅8⇒8⋅-15≤x≤14⋅8
⇒−85≤x≤2⇒-85≤x≤2
Mà x∈Zx∈ℤ
⇒x∈{−1,0,1,2}
\(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\)
\(\Rightarrow5x\in\left\{-5;0;5;10\right\}\)
\(\Rightarrow x\in\left\{-1;0;1;2\right\}\)
8. Tìm x, y ϵ Z.
\(y=\dfrac{4x-8}{2x+5}\)
\(y=\dfrac{2\left(2x+5\right)-18}{2x+5}=2-\dfrac{18}{2x+5}\)
\(y\in Z\Rightarrow\dfrac{18}{2x+5}\in Z\Rightarrow2x+5=Ư\left(18\right)\)
Mà 2x+5 luôn lẻ nên ta có: \(2x+5=\left\{-9;-3;-1;1;3;9\right\}\)
2x+5 | -9 | -3 | -1 | 1 | 3 | 9 |
x | -7 | -4 | -3 | -2 | -1 | 2 |
y | 4 | 8 | 20 | -16 | -4 | 0 |
Tìm x; y (x < y) biết x ϵ N*, y ϵ N* và \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) = \(\dfrac{1}{8}\)
Lời giải:
$\frac{1}{x}+\frac{1}{y}=\frac{1}{8}$
$\Rightarrow \frac{x+y}{xy}=\frac{1}{8}$
$\Rightarrow 8(x+y)=xy$
$\Rightarrow xy-8x-8y=0$
$\Rightarrow x(y-8)-8(y-8)=64$
$\Rightarrow (x-8)(y-8)=64$
Do $x,y$ tự nhiên nên $x-8,y-8\in\mathbb{Z}$
$\Rightarrow x-8$ là ước của $64$. Mà $x-8>-8$ với mọi $x\in\mathbb{N}^*$ nên:
$x-8\in\left\{1; 2; 4; 8; 16; 32; 64; -1; -2; -4\right\}$
Đến đây bạn chỉ cần chịu khó xét các TH là được.
tìm x, y ϵ Z
\(\dfrac{x}{-3}\)=\(\dfrac{9}{4}\) và 2x+y=-4
4 tìm 2 stn (a,b)=1 bt
\(\dfrac{5a+7b}{6a+5b}\)=\(\dfrac{29}{28}\)
8. Tìm x,y ϵ Z.
c) \(\dfrac{x}{2}+\dfrac{1}{y}=\dfrac{1}{3}\) d) 4x-5⋮2x+1
c, x/2+1/y=1/3 (x,y∈Z)
⇒1/y=1/3-x/2
⇒1/y=2-3x/6
⇒y(2-3x)=6
⇒y∈Ư(6)∈{1;-1;2;-2;3;-3;6;-6}
y | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2-3x | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
3x | -4 | 8 | -1 | 5 | 0 | 4 | 1 | 3 |
x | -4/3 (loại) | 8/3(loại) | -1/3(loại) | 5/3(loại) | 0 | 4/3(loại) | 1/3(loại) | 1
|
Vậy các cặp (x;y) thỏa mãn pt trên là (0;3);(1;-6)
d, 4x-5⋮2x+1 (x∈Z)
⇒4x-5-2(2x+1)⋮2x+1
⇒-7⋮2x+1
⇒2x+1∈Ư(-7)∈{1;-1;7;-7}
Ta lập bảng
2x+1 | 1 | -1 | 7 | -7 |
2x | 0 | -2 | 6 | -8 |
x | 0 | 1 | 3 | -4 |
Vậy với x=-4;x=0;x=1;x=3 thì thỏa mãn pt trên