Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
17 tháng 9 2023 lúc 21:29

Ta có: tổng ba góc trong một tam giác bằng 180° và \(\widehat N = \widehat P = 90^\circ ,\widehat {PMQ} = \widehat {NQM}\) nên \(\widehat {PQM} = \widehat {NMQ}\).

Xét hai tam giác MNQ và QPM có:

\(\widehat {NQM}=\widehat {PMQ}\)

MQ chung

\(\widehat {NMQ}=\widehat {PQM}\)

Vậy \(\Delta MNQ = \Delta QPM\)(g.c.g). Do đó MN = QP, MP = QN ( 2 cạnh tương ứng)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 0:29

a)      Ta thấy tam giác AMN cân tại A do AM = AN

\( \Rightarrow \widehat {{M_1}} = ({180^o} - \widehat {{A_1}}):2 = ({180^o} - {42^o}):2 = {69^o}\)

Ta thấy tam giác PMN = tam giác AMN ( c-c-c )

\( \Rightarrow \widehat {{M_1}} = \widehat {PMN} = {69^o}\) (góc tương ứng )

Mà \( \Rightarrow \widehat {{M_1}} + \widehat {{M_2}} + \widehat {PMN} = {180^o}\)( các góc kề bù )

\( \Rightarrow \widehat {{M_2}} = {180^o} - {69^o} - {69^o} = {42^o}\)

Mà tam giác MPB cân tại M do MB = MP nên

\( \Rightarrow \widehat {{B_1}} = \widehat {MPB}\)

Áp dụng định lí tổng 3 góc trong tam giác

\( \Rightarrow \widehat {{B_1}} = ({180^o} - {42^o}):2 = {69^o}\)

b)      Ta thấy \(\widehat {{B_1}}\)và \(\widehat {{M_1}}\)ở vị trí đồng vị và bằng nhau nên

\( \Rightarrow \)MN⫽BC

Vì tam giác PMN = tam giác AMN nên ta có

\( \Rightarrow \widehat {{M_1}} = \widehat {ANM} = \widehat {PMN} = \widehat {MNP}\)( do 2 tam giác cân và bằng nhau )

Mà \(\widehat {MNA}\)và\(\widehat {PMN}\) ở vị trí so le trong

\( \Rightarrow \)MP⫽AC

c)      Ta có \(\Delta AMN = \Delta PMN = \Delta MBP(c - g - c)\)(1)

Vì MP⫽AC ( chứng minh trên )

\( \Rightarrow \widehat {MPN} = \widehat {PNC}\) ( 2 góc so le trong ) =\({42^o}\)

\( \Rightarrow \Delta MPN = \Delta NCP(c - g - c)\)(2)

Từ (1) và (2) \( \Rightarrow \) 4 tam giác cân AMN, MBP, PMN, NCP bằng nhau 

Dương Phương Linh
Xem chi tiết
D Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2023 lúc 13:33

a: Xet ΔIMN và ΔIKN có

NM=NK

góc MNI=góc KNI

NI chung

=>ΔIMN=ΔIKN

=>góc IKN=90 độ

b:Xet ΔNKA vuông tại K và ΔNMP vuông tại M có

NK=NM

góc N chung

=>ΔNKA=ΔNMP

=>NA=NP

=>ΔNAP cân tại N

mà NI là phân giác

nên NI vuông góc PA

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
18 tháng 9 2023 lúc 19:55

a)

Xét tam giác MPK có:

\(\widehat {PKM} + \widehat {MPK} + \widehat {KMP} = {180^o}\)

Xét tam giác NPK có:

\(\widehat {PKN} + \widehat {NPK} + \widehat {KNP} = {180^o}\)

Mà \(\widehat {KMP} = \widehat {KNP};\,\,\,\widehat {MPK} = \widehat {NPK}\)

Suy ra \(\widehat {MKP} = \widehat {NKP}\).

b)Xét hai tam giác MPK và NPK có:

\(\widehat {MPK} = \widehat {NPK}\)

PK chung

\(\widehat {MKP} = \widehat {NKP}\)

=>\(\Delta MPK = \Delta NPK\)(g.c.g)

c) Do \(\Delta MPK = \Delta NPK\) nên MP=NP (2 cạnh tương ứng)

=> Tam giác MNP cân tại P.

Buddy
Xem chi tiết
Hà Quang Minh
8 tháng 9 2023 lúc 21:51

a) Vì \(MNPQ\) là hình thoi (gt)

Suy ra \(IM = IP\) và \(NQ \bot MP\)

Suy ra \(\widehat {{\rm{MIN}}} = 90\)

Xét tam giác vuông \(MPI\) (vuông tại \(I\)) ta có:

\(M{I^2} = M{N^2} - N{I^2} = {10^2} - {6^2} = 100 - 36 = 64\) (định lý Pythagore)

Suy ra \(MI = 8\) (dm)

b) Vì \(MNPQ\) là hình thoi (gt)

Suy ra \(NI\) là phân giác của \(\widehat {MNP}\)

Suy ra \(\widehat {MNI} = \widehat {PNI} = \frac{{128^\circ }}{2} = 64^\circ \)

Xét \(\Delta MNI\) vuông tại \(I\) ta có:

\(\widehat {{\rm{MNI}}} + \widehat {{\rm{NMI}}} = 90\)

Suy ra \(\widehat {IMN} = 90^\circ  - \widehat {MNI} = 90^\circ  - 64^\circ  = 26^\circ \)

肖一战(Nick phụ)
Xem chi tiết
anh hoang
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2022 lúc 21:34

a: Xét ΔMNP vuông tại M và ΔHNM vuông tại H có 

góc N chung

DO đó: ΔMNP∼ΔHNM

Suy ra: NM/NH=NP/NM

hay \(NM^2=NH\cdot NP\)

b: NP=13cm

\(NH=\dfrac{MN^2}{NP}=\dfrac{25}{13}\left(cm\right)\)

nguyenthienho
Xem chi tiết
Nguyệt Phượng
20 tháng 12 2018 lúc 19:56

a)

Xét tam giác NMD và tam giác NED, có:

NM=EH(gt)

\(\widehat{MND}=\widehat{DNE}\)(do MD là phân giác MNE)

ND là cạnh chung

Suy ra: Tam giác NMD=tam giác NED (c.g.c)

==> \(\widehat{NMD}=\widehat{NED}\) (2 góc tương ứng)

b) Có: +) MN vuông góc MP

+) EH vuông góc MP

==> MN // EH

c) Có : MN // EH

==> MNP = HEP (2 góc đồng vị)