HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho ΔABC cân tại A, AH ⊥ BC
a, Chứng minh ΔABH = ΔACH
b, Kẻ HE // AC (E ∈ AB). Chứng minh Δ AEH cân.
c, Gọi F là trung điểm của AH. Chứng minh BF + HE > \(\dfrac{3}{4}\) BC
Cho ΔABC cân tại A (\(\widehat{A}\)�^ < 90˚). Kẻ đường trung tuyến AI.
a, Chứng minh ΔABI = ΔACI b, Chứng minh AI ⊥ BC.
c, Kẻ đường trung tuyến BD cắt AI tại G. Chứng minh BI < 2GD.
Cho ΔABC cân tại A (\(\widehat{A}\) < 90˚). Kẻ đường trung tuyến AI.
Cho ΔABC vuông tại A (AB < AC). Vẽ AH ⊥ BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
Chứng minh AE + CD > BC.
Cho ΔABC vuông tại A có AB = 9 cm, AC = 12 cm, BC = 15 cm. Trên tia đối của tia AB lấy điểm E sao cho A là trung điểm của BE
a, Chứng minh ΔABC = ΔAEC
b, Vẽ đường trung tuyến BH của ΔBEC cắt cạnh AC tại M. Chứng minh M là trọng tâm của ΔBEC và tính độ dài đoạn CM
c, Từ A vẽ đường thẳng song song với EC, cắt BC tại K. Chứng minh 3 điểm E,M,K thẳng hàng.
a, Chứng minh ΔAHC = ΔDHC
b, Trên HC lấy điểm E sao cho HE = HB. Chứng minh E là trực tâm của ΔADC
c, Chứng minh AE + CD > BC.
* Lưu ý : Đề bài phải có vẽ hình và chứng minh và có cả giả thiết và kết luận.
Cho ∆ABC cân tại A. Kẻ BH ⊥ AC; CK ⊥ AB.a, Chứng minh : ∆ABH = ∆ACK b, Chứng minh : ∆AHK cânc, Gọi I là giao điểm của BH và CK; AI cắt BC tại M. Chứng minh: IM là phân giác của \(\widehat{BIC}\)
Cho △MNP vuông tại M (MN < MP). Kẻ đường phân giác NI của \(\widehat{MNP}\) ( I ∈ MP). Trên cạnh NP lấy điểm K sao cho NK = NM. Chứng minh rằng :
a, △ IMN = △ IKN b, Gọi A là giao điểm KI và NM. Chứng minh NI ⊥ AP