a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: góc EAH=góc CAH=góc EHA
=>ΔEAH cân tại E
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: góc EAH=góc CAH=góc EHA
=>ΔEAH cân tại E
Cho ΔABC cân tại A, biết AB = 5cm, BC = 6cm. Gọi H là trung điểm của BC.
a) Chứng minh: ΔABH = ΔACH
b) Chứng minh: AH ⊥ BC
c) Tính AH
d) Kẻ HE ⊥ AB (E ∈ AB), HK ⊥ AC (K ∈ AC). Chứng minh: HE = HK
e) Chứng minh: EK // BC
Ai giúp mik vs !!
Cho tam giác ABC cân tại A,kẻ AH vuông góc BC tại H
a) Chứng minh hai tam giác ABH,ACH bằng nhau
b)Cho AB=10cm;BC=12cm,tính AH
c)Kẻ HE //AC,E thuộc AB .Chứng minh tam giác AEH cân
d)Gọi F là trung điểm của AH. Chứng minh BF+HE>3/4BC
cho t.giác ABC cân tại A, kẻ AH\(\perp\)BC tại H
a) cm 2 t.giác ABH,ACH = nhau
b) cho AB=10cm, BC=12cm, tính AH
c) kẻ HE//AC, E\(\in\)AB , Chứng minh t.giác AEH cân
d) gọi F là trung điểm của AH. chứng minh BF+HE > \(\frac{3}{4}\)BC
Cho tam giác abc cân tại a , kẻ ah vuông góc bc tại h
a) Chứng minh hai tam giác abh,ach bằng nhau
b) Cho ab=10 cm; bc=12 cm , tính ah
c) Kẻ HE song song với ac , e thuộc ab . CM tam giác AEH cân
d) Gọi f là trung điểm của AH . Chứng minh BF+BE>3/4 BC
Câu 4. (3,5 diểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc BC tại H. a) Chứng minh hai tam giác ABH, ACH bang nhau. b) Cho AB =10 cm; BC = 12 cm, tính AH. c) Kẻ HE song song với AC, E thuộc AB. Chứng minh tam giác AEH cân. d) Gọi F là trung diểm của AH. Chứng minh BF+ HE>BC.
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) Chứng minh tam giác AHB =tam giác AHC
b) AB=10 cm, BC=12 cm. AH = ?
c) HE // AC. E thuộc AB. Cm tam giác AEH cân
d) F là trung điểm AH. CM BF+HE > 3/4 BC
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) Chứng minh tam giác AHB =tam giác AHC
b) AB=10 cm, BC=12 cm. AH = ?
c) HE // AC. E thuộc AB. Cm tam giác AEH cân
d) F là trung điểm AH. CM BF+HE > 3/4 BC
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) Chứng minh tam giác AHB =tam giác AHC
b) AB=10 cm, BC=12 cm. AH = ?
c) HE // AC. E thuộc AB. Cm tam giác AEH cân
d) F là trung điểm AH. CM BF+HE > 3/4 BC
Cho ΔABC có AB = AC, gọi H là trung điểm của BC.
a) Chứng minh: ΔABH = ΔACH
b) Qua điểm C vẽ đường thẳng vuông góc với AC, đường thẳng này cắt tia AH tại K.
Chứng minh: ΔABK = ΔACK và AB BK.
c) Gọi D , F lần lượt là trung điểm AH và AC. Trên tia đối của tia DB lấy điểm E sao
cho DE = DB. Chứng minh: 3 điểm H, E, F thẳng hàng.