GTNN của biểu thức x^2+2y^2+3xy-4x+6y+2023
1. Tìm GTNN của biểu thức:
A= x2 + 2y2-2xy-4x-6y-3
B= 4x2+2y2-4xy+4x+6y+1
*\(A=x^2+2y^2-2xy-4x-6y-3\)
\(A=x^2-2x\left(y+2\right)+\left(y^2+4y+4\right)+\left(y^2-10y+25\right)-32\)
\(A=x^2-2x\left(y+2\right)+\left(y+2\right)^2+\left(y-5\right)^2-32\)
\(A=\left(x-y-2\right)^2+\left(y-5\right)^2-32\ge-32\)
\(\Rightarrow Min_A=-32\Leftrightarrow x=7;y=5\)
* \(B=4x^2+2y^2-4xy+4x+6y+1\)
\(B=\left(2x\right)^2-\left(4xy+4x\right)+\left(y^2-2y+1\right)+\left(y^2+8y+16\right)-16\)\(B=\left(2x\right)^2-2.2x\left(y-1\right)+\left(y-1\right)^2+\left(y+4\right)^2-16\)\(B=\left(2x-y+1\right)^2+\left(y+4\right)^2-16\ge-16\)
\(\Rightarrow Min_B=-16\Leftrightarrow x=-\dfrac{5}{2};y=-4\)
tìm gtnn của biểu thức
a/ x^2 + 2y^2+2xy +4x + 6y +19
b/2x^2+y^2+2xy-2y-4
c/4x^2 +2xy-4x+4xy-3
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
tìm gtnn của biểu thức
a/A= x^2 + 2y^2+2xy +4x + 6y +19
b/B=2x^2+y^2+2xy-2y-4
c/C=4x^2 +2xy-4x+4xy-3
\(A=x^2+y^2+2xy+4x+4y+4+y^2+2y+1+14\)
\(A=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)
\(B=2\left(x^2+xy+\frac{y^2}{4}\right)+\frac{1}{2}\left(y^2-4y+4\right)-6\)
\(B=2\left(x+\frac{y}{2}\right)^2+\frac{1}{2}\left(y-2\right)^2-6\ge-6\)
\(\Rightarrow B_{min}=-6\) khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Câu c đề sai, sao vừa có 2xy lại có cả 4xy
Tìm GTNN của biểu thức:
A=x2 + y2 -2x +6y +20
B=x2 +2y2 +2xy -4x -8y +2014
\(A=x^2+y^2-2x+6y+20\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+10\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+10\ge10\)
Vậy GTNN của A là 10 khi \(x=1\) và \(y=-3\)
\(B=x^2+2y^2+2xy-4x-8y+2014\)
\(=\left[\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4\right]+\left(y^2-4y+4\right)+2006\)
\(=\left(x+y-2\right)^2+\left(y-2\right)^2+2006\ge2006\)
Vậy GTNN của B là 2006 khi \(x=0\) và \(y=2\)
A.Tìm GTNN của biểu thức A=x^4-2x^2y+2x^2+3y^2-6y+2029
B.Tìm GTNN của A=3x^2-8x+6/x^2-2x+1
a.
\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)
\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)
\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)
b.
Đặt \(x-1=t\Rightarrow x=t+1\)
\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)
\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)
\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Dấu \("="\Leftrightarrow x=2\)
tìm GTNN của biểu thức
a) C=4x^2+3y^2+4xy-4x-10y+7
b) D=x^2-2xy+6y^2-12x+2y+45
Giải cho mình nhé mình đang cần gấp ^_^
a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)
\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)
d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)
\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Tìm GTNN của biểu thức sau: B=(x-2y)2+y2+2x+6y+2046
\(B=\left(x-2y\right)^2+y^2+2x+6y+2046=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y^2+10y+25\right)+2020=\left(x-2y+1\right)^2+\left(y+5\right)^2+2020\ge2020\)
\(minB=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-11\\y=-5\end{matrix}\right.\)
tìm GTNN của biểu thức sau: A=2x^2+y^2+2xy+2x-2y+2023
Lời giải:
$A=2x^2+y^2+2xy+2x-2y+2023$
$=(x^2+2xy+y^2)+x^2+2x-2y+2023$
$=(x+y)^2-2(x+y)+x^2+4x+2023$
$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$
$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$
$\Leftrightarrow x=-2; y=3$
Bài 8: Tìm GTLN, GTNN(nếu có) của các biểu thức sau:
A= x2+12x+39 C= 4x - x2+1 E= 3 - 4x - x2
B= 9x2-12x D= x2+y2-2x+6y+12 F= x2+2y2+2xy-2y
\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=-6
\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)
Dấu '=' xảy ra khi x=2/3
\(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2