Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh Quang
Xem chi tiết
Nhã Doanh
22 tháng 8 2018 lúc 9:58

*\(A=x^2+2y^2-2xy-4x-6y-3\)

\(A=x^2-2x\left(y+2\right)+\left(y^2+4y+4\right)+\left(y^2-10y+25\right)-32\)

\(A=x^2-2x\left(y+2\right)+\left(y+2\right)^2+\left(y-5\right)^2-32\)

\(A=\left(x-y-2\right)^2+\left(y-5\right)^2-32\ge-32\)

\(\Rightarrow Min_A=-32\Leftrightarrow x=7;y=5\)

* \(B=4x^2+2y^2-4xy+4x+6y+1\)

\(B=\left(2x\right)^2-\left(4xy+4x\right)+\left(y^2-2y+1\right)+\left(y^2+8y+16\right)-16\)\(B=\left(2x\right)^2-2.2x\left(y-1\right)+\left(y-1\right)^2+\left(y+4\right)^2-16\)\(B=\left(2x-y+1\right)^2+\left(y+4\right)^2-16\ge-16\)

\(\Rightarrow Min_B=-16\Leftrightarrow x=-\dfrac{5}{2};y=-4\)

shoppe pi pi pi pi
Xem chi tiết
tth_new
11 tháng 5 2019 lúc 20:35

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

Trần Thanh Phương
12 tháng 5 2019 lúc 8:00

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

shoppe pi pi pi pi
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 5 2019 lúc 15:42

\(A=x^2+y^2+2xy+4x+4y+4+y^2+2y+1+14\)

\(A=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

\(B=2\left(x^2+xy+\frac{y^2}{4}\right)+\frac{1}{2}\left(y^2-4y+4\right)-6\)

\(B=2\left(x+\frac{y}{2}\right)^2+\frac{1}{2}\left(y-2\right)^2-6\ge-6\)

\(\Rightarrow B_{min}=-6\) khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Câu c đề sai, sao vừa có 2xy lại có cả 4xy

Thuy Tran
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
19 tháng 8 2018 lúc 10:19

\(A=x^2+y^2-2x+6y+20\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+10\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+10\ge10\)

Vậy GTNN của A là 10 khi \(x=1\)\(y=-3\)

\(B=x^2+2y^2+2xy-4x-8y+2014\)

\(=\left[\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4\right]+\left(y^2-4y+4\right)+2006\)

\(=\left(x+y-2\right)^2+\left(y-2\right)^2+2006\ge2006\)

Vậy GTNN của B là 2006 khi \(x=0\)\(y=2\)

Ngọc tấn đoàn
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2021 lúc 21:55

a.

\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)

\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)

\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)

b.

Đặt \(x-1=t\Rightarrow x=t+1\)

\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)

\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)

Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 21:59

\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Dấu \("="\Leftrightarrow x=2\)

linh Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 15:03

a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)

\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)

d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

Haruno :3
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 9 2021 lúc 21:55

\(B=\left(x-2y\right)^2+y^2+2x+6y+2046=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y^2+10y+25\right)+2020=\left(x-2y+1\right)^2+\left(y+5\right)^2+2020\ge2020\)

\(minB=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-11\\y=-5\end{matrix}\right.\)

Quỳnh Nguyễn
Xem chi tiết
Akai Haruma
29 tháng 11 2023 lúc 22:00

Lời giải:

$A=2x^2+y^2+2xy+2x-2y+2023$

$=(x^2+2xy+y^2)+x^2+2x-2y+2023$

$=(x+y)^2-2(x+y)+x^2+4x+2023$

$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$

$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$

$\Leftrightarrow x=-2; y=3$

Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2022 lúc 8:28

\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-6

\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)

Dấu '=' xảy ra khi x=2/3

\(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2