Rút gọn biểu thức.
a)M=(x+3y)2-(x-3y)2
b)Q=(x-y)2-4(x-y)(x+2y)+4(x+2y)2
Rút gọn biểu thức.
a)M=(x+3y)2-(x-3y)2
b)Q=(x-y)2-4(x-y)(x+2y)+4(x+2y)2
a) M = (x + 3y)² - (x - 3y)²
= [(x + 3y) - (x - 3y)][(x + 3y) + (x - 3y)]
= (x + 3y - x + 3y)(x + 3y + x - 3y)
= 6y.2x
= 12xy
b: Q=(x-y)^2-2(x-y)(2x+4y)+(2x+4y)^2
=(x-y-2x-4y)^2
=(-x-5y)^2
=x^2+10xy+25y^2
Bài 11 : rút gọn các biểu thức
a. ( 7x + 4 )2 - ( 7x + 4 ) ( 7x - 4 )
b. ( x + 2y)2 - 6xy ( x + 2y )
Bài 12 : Tính
a. (1/2x + 4)2
b. ( 7x - 5y )2
c. ( 6x2 + y2 ) ( y2 - 6x2 )
d . ( x + 2y )2
e. ( x - 3y ) ( x + 3y )
f. ( 5 - x )2
Bài 12:
a) \(\left(\dfrac{1}{2}x+4\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)
\(=\dfrac{1}{4}x^2+4x+16\)
b) \(\left(7x-5y\right)^2\)
\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)
\(=49x^2-70xy+25y^2\)
c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)
\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)
\(=y^4-36x^4\)
d) \(\left(x+2y\right)^2\)
\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)
\(=x^2+4xy+4y^2\)
e) \(\left(x-3y\right)\left(x+3y\right)\)
\(=x^2-\left(3y\right)^2\)
\(=x^2-9y^2\)
f) \(\left(5-x\right)^2\)
\(=5^2-2\cdot5\cdot x+x^2\)
\(=25-10x+x^2\)
\(11,\)
\(a,\left(7x+4\right)^2-\left(7x+4\right)\left(7x-4\right)\)
\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)
\(=\left(7x+4\right).8=56x+32\)
\(b,\left(x+2y\right)^2-6xy\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x+2y-6xy\right)\)
Bài `12`
`(1/2x+4)^2`
`=(1/2x)^2 + 2 . 1/2x.4 + 4^2`
`= 1/4 x^2 +4x + 16`
__
`(7x-5y)^2`
`=(7x)^2-2.7x.5y+(5y)^2`
`= 49x^2 - 70xy + 25y^2`
__
`(6x^2+y^2)(y^2-6x^2)`
`=(y^2+6x^2)(y^2-6x^2)`
`=(y^2)^2 - (6x^2)^2`
`=y^4-36x^4`
__
`(x+2y)^2`
`=x^2+ 2.x.2y+(2y)^2`
`= x^2 + 4xy +4y^2`
__
`(x-3y)(x+3y)`
`=x^2 - (3y)^2`
`=x^2 - 9y^2`
__
`(5-x)^2`
`=5^2 -2.5.x+x^2`
`=25 - 10x+x^2`
Bài `11`
`(7x+4)^2 -(7x+4)(7x-4)`
`= (7x+4)(7x+4) -(7x+4)(7x-4)`
`=(7x+4)(7x+4-7x+4)`
`=8(7x+4)`
`= 56x+32`
__
`(x+2y)^2-6xy (x+2y)`
`= (x+2y) (x+2y-6xy)`
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2
Rút gọn rồi tính giá trị của biểu thức khi x=1;y=\(-3\frac{1}{4}\)
\(\frac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}\)\(\left[1:\frac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
rút gọn biểu thức 2x(x-y)+3y(y-x)-2y^2-2x^2
Rút gọn:
\(\frac{x+y}{y}\sqrt{\frac{x^3y^2+2x^2y^3+xy^4}{x^2+2xy+y^2}}\)
giúp với ạ
Rút gọn
a, ( x + y ) . ( x + y ) mũ 2– 3xy . ( x + y )
b, ( x – y ) . ( x – y ) mũ 2 – 3xy . ( x – y)
c, ( x – 2y) mũ 2 + 4y mũ 2
d, ( 3x – 2y ) mũ 2 + 12xy
e, ( x – 3y ) . ( x + 3y ) – ( x – 2y ) mũ 2
a, (\(x\) + y).(\(x\) + y)2 - 3\(xy\).(\(x\) + y)
= (\(x+y\))3 - 3\(x^2\)y - 3\(xy^2\)
= \(x^3\) + 3\(x^2\).y + 3\(xy^2\) + y3 - 3\(x^2\).y - 3\(xy^2\)
= \(x^3\) + y3
b, (\(x-y\)).(\(x-y\))2 - 3\(xy\).(\(x-y\))
= (\(x\) - y)3 - 3\(x^2\).y + 3\(xy^2\)
= \(x^3\) - 3\(x^2\)y + 3\(xy^2\) - y3 - 3\(x^2\)y + 3\(xy^2\)
= \(x^3\) - 6\(x^2\)y + 6\(xy^2\) - y3
c, (\(x\) - 2y)2 + 4y2
= \(x^2\) - 4\(xy\) + 4y2 + 4y2
= \(x^2\) - 4\(xy\) + 8y2
M=\(\frac{x^3y^2+x^2y^3-x^3-y^3-x^2+y^2}{x^2y+xy^2-x^2+y^2-x-y}\)
rút gọn m
tìm giá trị nguyên của x,y khi m=90
1.tìm điều kiện xác định của các bt sau
a,5x^2y/x+4 b,3x-2y/2x-1 c,5x^2/x(y-3) d,4x^3y/x^2-4y^2 e,2x+1/(5-x)(y+2)
2.rút gọn các phân thức
a,-12x^3y^2/-20x^2y^2 b,x^2+xy-x-y/x^2-xy-x+y c,7x^2-7xy/y^2-x^2 d,7x^2+14x+7/3x^2+3x e,3y-2-3xy+2x/1-3x-x^3+3x^2
f,x^10-x^8+x^6-x^4+x^2+1/x^4-1 g,x^2+7x+12/x^2+5x+6
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)