Tính tổng và hiệu của hai đa thức P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 – xy – 6
Tính tổng và hiệu của hai đa thức \(P = {x^2}y + {x^3} - x{y^2} + 3\) và \(Q = {x^3} + x{y^2} - xy - 6\).
\(\begin{array}{l}P + Q = {x^2}y + {x^3} - x{y^2} + 3 + {x^3} + x{y^2} - xy - 6\\ = \left( {{x^3} + {x^3}} \right) + {x^2}y + \left( { - x{y^2} + x{y^2}} \right) - xy + \left( {3 - 6} \right)\\ = 2{x^3} + {x^2}y - xy - 3\\P - Q = {x^2}y + {x^3} - x{y^2} + 3 - \left( {{x^3} + x{y^2} - xy - 6} \right)\\ = {x^2}y + {x^3} - x{y^2} + 3 - {x^3} - x{y^2} + xy + 6\\ = \left( {{x^3} - {x^3}} \right) + {x^2}y + \left( { - x{y^2} - x{y^2}} \right) + xy + \left( {3 + 6} \right)\\ = - 2x{y^2} + {x^2}y + xy + 9\end{array}\)
tìm tổng của 2 đa thức trong trường hợp sau
P=x\(^2\)y+x\(^3\)-xy\(^2\)+3 và Q=x\(^3\)+xy\(^2\)-6
\(P+Q=x^2y+x^3-xy^2+3+x^3+xy^2-6=x^2y+2x^3-3\)
bậc 3
Tính tổng của đa thức P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 - xy - 6.
Ta có: P = x2y + x3 – xy2 + 3 và Q = x3 + xy2 - xy - 6
nên P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 - xy - 6)
= x2y + x3 – xy2 + 3 + x3 + xy2 - xy - 6
= (x3 + x3) + x2y + (xy2 - xy2) - xy + (3 - 6)
= 2x3 + x2y - xy -3.
P+Q=(x2y+x3-xy2+3)+(x3+ xy2-xy-6 )
=x2y+x3-xy2+3+x3+ xy2-xy-6
=x2y+(x3+x3)+(-xy2+xy2)+(3-6)+(-xy)
=x2y + 2x3 - 3 - xy
.Kết quả thu gọn của đa thức 4x mũ 3 y mũ 2 - 5x - 3x mũ 3 y mũ 2 + 5x - 7 là
.Giá trị của đa thức M = 3 xy mũ 2 + xz tại x = 1 ; y = -1 ; z = 2 là
.Tổng của hai đa thức M = 3xy mũ 2 + xz và N = 5xy mũ 2 - xz là
.Cho hai đa thức E = 4x mũ 2 y mũ 3 + 3x + 5 và F = 5x mũ 2 y mũ 3 - 2x . Hiệu E - F là
.Biết Q + ( 4x mũ 2 y mũ 3 + 3x + 5 ) = 5x mũ 2 + y mũ 3 - 2x + 5 . Đa thức Q là
.Đa thức P(x) = 2x - 6 có nghiệm là
.Đa thức Q(x) = x mũ 3 + 4x + m . có một nghiệm x= -2 . Khi đó m là
câu 1. (1,5đ) cho hai đa thức sau: P=x^2y+2x^3-xy^2+5 Q=x^3+xy^2-2x^2y-6 a) tính tổng của đa thức p và q. b) tìm đa thức n sao cho q = p + n.
a) P + Q = (x² + 2x³ - xy² + 5) + (x³ + xy² - 2x²y - 6)
= x² + 2x³ - xy² + 5 + x³ + xy² - 2x²y - 6
= (2x³ + x³) + x² + (-xy² + xy²) - 2x²y + (5 - 6)
= 3x³ + x² - 2x²y - 1
b) Q = P + N
N = Q - P
= (x³ + xy² - 2x²y - 6) - (x² + 2x³ - xy² + 5)
= x³ + xy² - 2x²y - 6 - x² - 2x³ + xy² - 5
= (x³ - 2x³) + (xy² + xy²) - 2x²y - x² + (-6 - 5)
= -x³ + 2xy² - 2x²y - x² - 11
Vậy N = -x³ + 2xy² - 2x²y - x² - 11
Tính tổng hai đa thức P và Q rồi tìm bậc của đa thức tổng
Tính tổng của các đa thức :
a) \(P=x^2y+xy^2-5x^2y^2+x^3\) và \(Q=3xy^2-x^2y+x^2y^2\)
b) \(M=x^3+xy+y^2-x^2y^2-2\)và \(N=x^2y^2+5-y^2\)
a)\(P+Q=\left(x^2y+xy^2-5x^2y^2+x^3\right)+\left(3xy^2-x^2y+x^2y^2\right)\)
=\(x^2y+xy^2-5x^2y^2+x^3+3xy^2-x^2y+x^2y^2\)
=\(x^2y-x^2y+xy^2+3xy^2-5x^2y^2+x^2y^2+x^3\)
=\(4xy^2-4x^2y^2+x^3\)
b)\(M+N=\left(x^3+xy+y^2-x^2y^2-2\right)+\left(x^2y^2+5-y^2\right)\)
=\(x^3+xy+y^2-x^2y^2-2+x^2y^2+5-y^2\)
=\(x^3+xy+y^2-y^2-x^2y^2+x^2y^2-2+5\)
=\(x^3+xy+3\)
Bài dài nên chắc sẽ có sai sót, nếu đúng bạn nha
Tính tổng của các đa thức :
a) \(P=x^2y+xy^2-5x^2y^2+x^3\) và \(Q=3xy^2-x^2y+x^2y^2\)
b) \(M=x^3+xy+y^2-x^2y^2-2\) và \(N=x^2y^2+5-y^2\)
a) Ta có: P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2
=> P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2
= x3 – 5x2y2 + x2y2 + x2y – x2y + xy2 + 3xy2
= x3 – 4x2y2 + 4xy2
b) Ta có: M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2.
=> M + N = x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2
= x3 – x2y2 + x2y2 + y2 – y2 + xy - 2 + 5
= x3 + xy + 3.
a)
P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2
= x3 – 5x2y2 + x2y2 + x2y – x2y + xy2 + 3xy2
= x3 – 4x2y2 + 4xy2
b)
M + N = x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2
= x3 – x2y2 + x2y2 + y2 – y2 + xy - 2 + 5
= x3 + xy + 3.
P=x²y+xy²-5x²y²+x³ và Q=3xy²-x²y+x²y² Tính tổng của hai đa thức
`P+Q=x^2y+xy^2-5x^2y^2+x^3+3xy^2-x^2y+x^2y^2`
`=(x^2y-x^2y)+(xy^2+3xy^2)-(5x^2y^2-x^2y^2)+x^3`
`=4xy^2-4x^2y^2+x^3`
a/ Thu gọn đơn thức (12/5.x^4 y^2).(5/9 xy^3xy) đó xác định phần hệ số, phần biến và bậc của đơn thức: b/ Tính giá trị của bieur thức 2 3 A x xy y = + − tại x y = = − 2; 1 c/ Tìm đa thức M, biết 2 2 2 2 (2 3 3 7) ( 3 7) x y xy x M x y xy y − + + − = − + + d/ Cho đa thức 2 P x ax x ( ) 2 1 = − + Tìm a, biết: P(2) 7 = Câu 3. (1,5 điểm) Cho các đa thức: A(x) = x3 + 3x2 – 4x – 12 B(x) = x3 – 3x2 + 4x + 18 a. Hãy tính: A(x) + B(x) và A(x) – B(x) b. Chứng tỏ x = – 2 là nghiệm của đa thức A(x) nhưng không là nghiệm của đa thức B(x)
Câu 3:
a: A(x)=x^3+3x^2-4x-12
B(x)=x^3-3x^2+4x+18
A(x)+B(x)
=x^3+3x^2-4x-12+x^3-3x^2+4x+18
=2x^3+6
A(x)-B(x)
=x^3+3x^2-4x-12-x^3+3x^2-4x-18
=6x^2-8x-30
b: A(-2)=(-8)+3*4-4*(-2)-12
=-20+3*4+4*2=0
=>x=-2 là nghiệm của A(x)
B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10
=>x=-2 ko là nghiệm của B(x)
1. Cho x+ y = 1998. Tính giá trị biểu thức:
x(x +5) + y(y + 5) + 2(xy - 3)
2. Cho đa thức: \(f\left(x\right)=x^2+mx-12\) (m là hằng số)
Tìm các nghiệm của đa thức f(x), biết rằng f(x) có một nghiệm là -3
3. Tìm hệ số a, b, c của đa thức \(P\left(x\right)=ax^2+bx+c\)biết P(2) = -4 và P(x) có hai nghiệm là -1 và -2