Ta có:
• P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 + x3 + xy2 – xy – 6
= x2y + (x3 + x3) + (xy2 – xy2) – xy + (3 – 6)
= x2y + 2x3 – xy – 3.
• P – Q = (x2y + x3 – xy2 + 3) – (x3 + xy2 – xy – 6)
= x2y + x3 – xy2 + 3 – x3 – xy2 + xy + 6
= x2y + (x3 – x3) – (xy2 + xy2) + xy + (6 + 3)
= x2y – 2xy2 + xy + 9.
Vậy P + Q = x2y + 2x3 – xy – 3; P – Q = x2y – 2xy2 + xy + 9.
\(\text{ P + Q = (x^2y + x^3 – xy^2 + 3) + (x^3 + xy^2 – xy – 6)}\)
\(\text{= x^2y + x^3 – xy^2 + 3 + x^3 + xy^2 – xy – 6}\)
\(\text{= x^2y + (x^3 + x^3) + (xy^2 – xy^2) – xy + (3 – 6)}\)
\(\text{= x^2y + 2x^3 – xy – 3}\)
__________________________________________________
\(\text{P – Q = (x^2y + x^3 – xy^2 + 3) – (x^3 + xy^2 – xy – 6)}\)
\(\text{= x^2y + x^3 – xy^2 + 3 – x^3 – xy^2 + xy + 6}\)
\(\text{= x^2y + (x^3 – x^3) – (xy^2 + xy^2) + xy + (6 + 3)}\)
\(\text{= x^2y – 2xy^2 + xy + 9}\)