Cho tam giác Abc có ac =12,ab=9 kẻ đg cao Ah ,cmABC đồng dạng tg AHC ,Cm Ac^2 =Hc.Bc , Hc
Cho tam giác ABC vuông tại A kẻ đg cao AH (H thuộc BC)
a) cm Tam giác ABC đồng dạng Tam giác HBA và AB^2=BH.BC
b)Cho biết BH= 9cm , HC=16cm tính AB và diện tích tam giác ABC
c) HD là tia phân giác của góc AHC ( thuộc AC ) . Tính tỉ số AD/DC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/AB
=>BA^2=BH*BC
b: \(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
AC=căn 16*25=20(cm)
S=15*20/2=150cm2
c: AD/DC=HA/HC=12/16=3/4
cho tam giác ABC, góc A=90, đường cao AH, AC=30cm, AH=24cm.
a) chứng minh tg ABC đồng dạng tg HAC
b) tính độ dài đoạn thảng HC,BC,AB
c) kẻ HM vuông góc vs AB (M thuộc AB), HN vg góc vs AC(N thuộc AC). Chứng minh tg AMN đồng dạng tg ACB
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACH}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=AC^2-AH^2=30^2-24^2=324\)
hay HC=18(cm)
Ta có: ΔABC∼ΔHAC(cmt)
nên \(\dfrac{AB}{HA}=\dfrac{BC}{AC}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{24}=\dfrac{BC}{30}=\dfrac{30}{18}=\dfrac{5}{3}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AB}{24}=\dfrac{5}{3}\\\dfrac{BC}{30}=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40\left(cm\right)\\BC=50\left(cm\right)\end{matrix}\right.\)
Vậy: HC=18cm; AB=40cm; BC=50cm
c) Xét ΔAHM vuông tại M và ΔABH vuông tại H có
\(\widehat{HAM}\) chung
Do đó: ΔAHM\(\sim\)ΔABH(g-g)
Suy ra: \(\dfrac{AH}{AB}=\dfrac{AM}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=AM\cdot AB\)(1)
Xét ΔAHN vuông tại N và ΔACH vuông tại H có
\(\widehat{NAH}\) chung
Do đó: ΔAHN\(\sim\)ΔACH(g-g)
Suy ra: \(\dfrac{AH}{AC}=\dfrac{AN}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=AN\cdot AC\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt)
Do đó: ΔAMN\(\sim\)ΔACB(c-g-c)
Cho tam giác ABC vuông tại A,đg cao AH;p/g BD.
Chứng minh: tam giác AHB đồng dạng tam giác CAB
Tam giác AHC đồng dạng tam giác BAC
AHbình=BH nhân HC
Biết AB=12;AC=16.Tính BC,CD,DA
Tính tỉ số S tam giác ABD và S tam giác BDC
cho tam giác abc vuông tại a có ab=9cm ac=12 cm, đường cao ah
a ) cmr tg ABC đồng dạng vs tg HBA
b) kẻ phân giác BM ( M thuộc AC ) cắt AH tại N , tyinhs độ dài AM,CM
c) c/m MH/NA=MA/MC
Cho tam giác ABC vuông tại A, có AB=9, AC=12.Kẻ đường cao AH(H thuộc BC)
a) CM Tam giác HBA đồng dạng với tg ABC
b) Tính độ dài các đoạn thẳngBC, BH
a) Xét 2 tam giác : ABC và HBA
Có : \(\widehat{BAC}=\widehat{BAH}\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
Do đó : \(\Delta ABC~\Delta HBA\left(g-g\right)\left(đpcm\right)\)
b) +) Áp dụng định lý Py - ta - go , ta có :
\(BC^2=AB^2+AC^2\)
\(=9^2+12^2\)
\(BC=\sqrt{225}=15cm\)
CẦN GẤP Ạ
Cho tam giác ABC nhọn (AB < AC) đường cao AH (H thuộc BC) kẻ HK vuông góc với AC (K thuộc AC)
a/ Chứng minh tam giác AHC đồng dạng với tam giác HKC
b/ Chứng minh KH^2=AK.AC
c/ Biết AH=3cm, HC=4cm. Tính diện tích tam giác AHC/diện tích tam giác HKC
a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có
góc C chung
=>ΔAHC đồng dạng với ΔHKC
b: Xet ΔHAC vuông tại H có HK là đường cao
nên HK^2=AK*KC
c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)
CK=4^2/5=3,2cm
=>AK=1,8cm
=>HK=2,4cm
\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)
CẦN GẤP Ạ
Cho tam giác ABC nhọn (AB < AC) đường cao AH (H thuộc BC) kẻ HK vuông góc với AC (K thuộc AC)
a/ Chứng minh tam giác AHC đồng dạng với tam giác HKC
b/ Chứng minh KH^2=AK.AC
c/ Biết AH=3cm, HC=4cm. Tính diện tích tam giác AHC/diện tích tam giác HKC
a: Xét ΔAHC vuông tại Hvà ΔHKC vuông tại K có
góc C chung
=>ΔAHC đồng dạng với ΔHKC
b: Xet ΔHAC vuông tại H có HK là đường cao
nên HK^2=AK*KC
c: \(S_{AHC}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
\(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)
CK=4^2/5=3,2cm
=>AK=1,8cm
=>HK=2,4cm
\(S_{HKC}=\dfrac{1}{2}\cdot2.4\cdot3.2=1.2\cdot3.2=3.84\left(cm^2\right)\)
Cho tam giác ABC vuông tại A biết AB = 9 cm,AC = 12 cm .Vẽ đường cao AH a.Chứng minh tam giác CHA đồng dạng với tam giác CAB b.chứng minh AC²= BC×HC c. Tính độ dài AH
a, Xét \(\Delta CHA.và.\Delta CAB\), ta có:
\(\widehat{CHA}=\widehat{CAB}=90^o\)
\(\widehat{C.}chung\)
\(\Rightarrow\Delta CHA\sim\Delta CAB\) ( g.g )
b, \(Vì.\Delta CHA\sim\Delta CAB\)
\(\Rightarrow\dfrac{CH}{CA}=\dfrac{CA}{CB}\\ \Rightarrow AC^2=CB.CH\left(đpcm\right)\)
c. Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow BC^2=9^2+12^2=225\\ \Rightarrow BC=\sqrt{225}=15\left(cm\right)\)
\(Vì.\Delta CHA\sim\Delta CAB\)
\(\Rightarrow\dfrac{HA}{AB}=\dfrac{CA}{CB}\)
\(\Rightarrow AH=\dfrac{CA.AB}{CB}=\dfrac{12.9}{15}=7,2\left(cm\right)\)
Cho tam giác ABC nhọn, biết AB = 15cm, AC = 13cm, đường cao AH = 12cm. Kẻ AH vuông góc với AB ( M thuộc AB ), HN vuông góc với AC ( N thuộc AC )
a) CM tam giác ANH đồng dạng với tam giác AHC
b) Tính HB, HC
c) CM : AN.AC = AM.AB
a.Xét tam giác ANH và tam giác AHC, có:
\(\widehat{ANH}=\widehat{AHC}=90^0\)
\(\widehat{NAH}=\widehat{HCA}\) ( cùng phụ với \(\widehat{A}\) )
Vậy tam giác ANH đồng dạng tam giác AHC ( g.g )
b. Xét tam giác AHB và tam giác ABC, có:
\(\widehat{BAC}=\widehat{AHB}=90^0\)
\(\widehat{B}:chung\)
Vậy tam giác AHB đồng dạng tam giác ABC ( g.g )
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{BH}{AB}\)
\(\Leftrightarrow\dfrac{12}{13}=\dfrac{BH}{15}\)
\(\Leftrightarrow13BH=180\)
\(\Leftrightarrow BH=\dfrac{180}{13}cm\)
Xét tam giác AHC và tam giác ABC, có:
\(\widehat{CAB}=\widehat{CHA}=90^0\)
\(\widehat{C}:chung\)
Vậy tam giác AHC đồng dạng tam giác ABC ( g.g )
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{CH}{AC}\)
\(\Leftrightarrow\dfrac{12}{15}=\dfrac{CH}{13}\) \(\Leftrightarrow\dfrac{4}{5}=\dfrac{CH}{13}\)
\(\Leftrightarrow5CH=52\)
\(\Leftrightarrow CH=\dfrac{52}{5}cm\)