\(M=\sqrt{x+\sqrt{x^2-4}}\sqrt{x-\sqrt{x^2-4}}\) với x>= 2
a/Rút gọn M
b/Tính M khi \(x=4+\sqrt{5}\)
1) Cho biểu thứ M= \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) - \(\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) ( với x>0, x≠4)
a) rút gọn biểu thức M
b) Tính giá trị của M khi x= 3+2\(\sqrt{2}\)
c) Tìm giá trị của x để M>0
a: \(M=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b: Khi \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\) thì
\(M=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}-2}{\sqrt{\left(\sqrt{2}+1\right)^2}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)
\(=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\left(\sqrt{2}-1\right)^2=3-2\sqrt{2}\)
c: M>0
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\)
mà \(\sqrt{x}>0\)
nên \(\sqrt{x}-2>0\)
=>\(\sqrt{x}>2\)
=>x>4
Cho biểu thức M=\(\)\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}vớix>2,x\ne4\)
a,Rút gọn biểu thức M
b,Tính giá trị M khi x=3+\(2\sqrt{2}\)
c,Tìm giá trị của x để M>0
a, \(\Rightarrow M=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Rightarrow M=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Rightarrow M=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(\Rightarrow M=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b, \(x=3+2\sqrt{2}\Rightarrow M=\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}=\dfrac{\sqrt{2+2\sqrt{2}.1+1}-2}{\sqrt{2+2\sqrt{2}.1+1}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2-2\sqrt{2}+1}{2-1}=3-2\sqrt{2}\)
c, \(M>0\Rightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\Rightarrow\sqrt{x}-2>0\Rightarrow\sqrt{x}>2\Rightarrow x>4\)
Cho biểu thức M=\(\left(\dfrac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\dfrac{1}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right)\)với x≥0,x≠1
a)Rút gọn M
b)Tính M khi x=\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
a) \(M=\dfrac{x+\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}:\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(x+1\right)}.\dfrac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) \(x=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2+\sqrt{3}+2-\sqrt{3}=4\)
\(M=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{4}+1}{\sqrt{4}-1}=\dfrac{2+1}{2-1}=3\)
B1: tính : A = \(\sqrt{7+4\sqrt{3}}\) + \(\sqrt{7-4\sqrt{3}}\)
B2: cho P= 3x-\(\sqrt{x^2-10x+25}\)
a, rút gọn P
b, tính P khi x=2
B3: rút gọn : M = \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)với x khác 1
giúp em zới ạ em cảm mơn nhìu nhìu
\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)
\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)
\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)
\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)
B1.
Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)
Bài 1 :
\(A=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\\ =\sqrt{3}+2+2-\sqrt{3}=4\)
Bài 2 :
a) \(P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\)
b) khi x = 2 thì \(P=3.2-\left|2-5\right|=3\)
Bài 3 :
\(M=\dfrac{\sqrt{\left(\sqrt{x}-1\right)^2}}{x-1}=\dfrac{\left|\sqrt{x}-1\right|}{x-1}\)
Cho M= \(\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a) Rút gọn M
b) Tìm các giá trị của x để có \(\dfrac{5}{3}M\) = \(\sqrt{x}+4\)
a) Ta có: \(M=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\left(1-\dfrac{x-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{-\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-3}{\sqrt{x}-2}\)
M = \(1:(\dfrac{1}{2+\sqrt{x}}+\dfrac{\dfrac{3x}{2}}{4-x}-\dfrac{2}{4-2\sqrt{x}}):\dfrac{1}{4-2\sqrt{x}}\)
a) Rút gọn M
b) Tìm giá trị của x để M = 20
a: \(M=1:\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{3x}{2\left(x-4\right)}+\dfrac{1}{2\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{4-2\sqrt{x}}{1}\)
\(=1:\left(\dfrac{2\sqrt{x}-4-3x+\sqrt{x}+2}{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\cdot\dfrac{-2\left(\sqrt{x}-2\right)}{1}\)
\(=\dfrac{2\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\cdot\left(-2\right)\cdot\left(\sqrt{x}-2\right)}{-3x+3\sqrt{x}-2}\)
\(=\dfrac{-4\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}{-3x+3\sqrt{x}-2}\)
b: M=20
=>\(-4\left(x-4\right)\left(\sqrt{x}-2\right)=-60x+60\sqrt{x}-40\)
=>\(x\sqrt{x}-2x-4\sqrt{x}+8=-15x+15\sqrt{x}-10\)
=>\(x\sqrt{x}+13x-19\sqrt{x}+18=0\)
=>\(x\in\varnothing\)
\(M=\dfrac{x^5+x^4\sqrt[3]{6}+x^3\sqrt[3]{36}}{\left|x^3-3\right|-3}\)
Rút gọn M và tính M khi \(x=2\sqrt[3]{6}\)
\(M=\dfrac{x^3\left(x^2+x\sqrt[3]{6}+\sqrt[3]{36}\right)}{\left|x^3-3\right|-3}=\dfrac{48\left(4\sqrt[3]{36}+2\sqrt[3]{36}+\sqrt[3]{36}\right)}{48-3-3}\\ M=\dfrac{48\cdot7\sqrt[3]{36}}{42}=8\sqrt[3]{36}\)
1.cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\)với(x≥0;x≠4)
a)rút gọn A
b)tính A khi x=6+4\(\sqrt{2}\)
2.cho biểu thức P=\(\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)với x≥0;x≠1;x≠4
a)rút gọn P
b)tìm x để P=-4
Cho biểu thức : M= \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{9-x}\)
a) Rút gọn M
b) Tính M khi x= 11+\(6\sqrt{2}\)
c) tìm các giá trị x để M<1
a: \(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{x-9}\)
\(=\dfrac{3x+9\sqrt{x}}{x-9}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
b: Khi x=11+6 căn 2 thì \(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}=\dfrac{9+3\sqrt{2}}{\sqrt{2}}=\dfrac{9\sqrt{2}+6}{2}\)
c: M<1
=>\(\dfrac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
=>căn x-3<0
=>0<x<9
`a,` \(M=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{9-x}\) \(\left(x\ne\pm3;x>0\right)\)
\(M=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)
\(M=\dfrac{2x-6\sqrt{x}}{x-9}+\dfrac{x+3\sqrt{x}+\sqrt{x}+3}{x-9}-\dfrac{3+11\sqrt{x}}{x-9}\)
\(M=\dfrac{3x+9\sqrt{x}}{x-9}\)
\(M=\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)
\(M=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
`b,`Ta có :
\(M=\dfrac{3\sqrt{11+6\sqrt{2}}}{\sqrt{11+6\sqrt{2}}-3}\)
\(M=\dfrac{3\sqrt{\left(3+\sqrt{2}\right)^2}}{\sqrt{\left(3+\sqrt{2}\right)^2}-3}\)
\(M=\dfrac{3\left(3+\sqrt{2}\right)}{3+\sqrt{2}-3}\)
\(M=\dfrac{9+3\sqrt{2}}{\sqrt{2}}\)
\(M=\dfrac{6+9\sqrt{2}}{2}\)
`c,` Để `M<1` Ta có :
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}< 1\)
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-1< 0\)
\(\dfrac{3\sqrt{x}}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}< 0\)
\(\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\sqrt{x}-3< 0\) ( vì \(2\sqrt{x}+3>0\) )
\(\sqrt{x}< 3\)
\(x< 9\)
Đối chiếu ĐKXĐ ta có : `0<x<9`