a)\(M=\sqrt{x+\sqrt{x^2-4}}\sqrt{x-\sqrt{x^2-4}}\)
=\(\sqrt{\left(x+\sqrt{x^2-4}\right)\left(x-\sqrt{x^2-4}\right)}\)
=\(\sqrt{x^2-\left(\sqrt{x^2-4}\right)^2}\)
=\(\sqrt{x^2-\left(x^2-4\right)}\)
=\(\sqrt{x^2-x^2+4}\)
=\(\sqrt{4}=2\)
b) vì M=2 nên giá trị của M không phụ thuộc vào giá trị của biến nên với
\(x=4+\sqrt{5}\)
thì giá trị của M vẫn là 4
\(M\sqrt{x}=\sqrt{\left(x+2\right)+\left(x-2\right)+2\sqrt{\left(x-2\right)\left(x+2\right)}}+\sqrt{\left(x+2\right)+\left(x-2\right)-2\sqrt{\left(x-2\right)\left(x+2\right)}}\)
\(=\sqrt{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{x+2}-\sqrt{x-2}\right)^2}\)
\(=\sqrt{x+2}+\sqrt{x-2}+\sqrt{x+2}-\sqrt{x-2}=2\sqrt{x+2}\)
\(\Rightarrow M=\sqrt{2}\sqrt{x+2}\)