cho pt bậc hai ẩn x tham số m : x2(m-1)x+4m-10=0
chứng minh pt luôn có 2 ngiệm phân biệt
Cho pt bậc hai ẩn x: x2 - 2mx + 2m - 2 = 0 (1)
a) Giải pt (1) khi m = 0, m = 1.
b) Chứng minh pt (1) luôn có hai nghiệm phân biệt với mọi m ϵ R.
c) Tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m.
d) Biết x1, x2 là hai nghiệm của pt (1). Tìm m để x12 + x22 = 4.
e) Tìm m để I = x12 + x22 đạt giá trị nhỏ nhất.
a: Khim=0 thì (1) trở thành \(x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
Khi m=1 thì (1) trở thành \(x^2-2x=0\)
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)
\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Cho pt bậc hai ẩn x: x2 - 2mx + 2m - 1 = 0 (1)
a) Chứng minh pt (1) luôn có hai nghiệm x1, x2 với mọi giá trị của m.
b) Với giá trị nào của m thì pt (1) có hai nghiệm phân biệt ?
c) Trong trường hợp pt (1) có nghiệm kép. Hãy tính nghiệm kép đó.
d) Tìm m để pt (1) có nghiệm này bằng hai lần nghiệm kia (x1 = 2x2).
a, \(\Delta'=m^2-2m+1=\left(m-1\right)^2\)
Vậy pt luôn có 2 nghiệm
b, để pt có 2 nghiệm pb khi m khác 1
c, để pt có nghiệm kép khi m = 1
d. Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1x_2=2m-1\left(2\right)\end{matrix}\right.\)
Ta có \(x_1-2x_2=0\left(3\right)\)
Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m\\x_1=2m-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2m-3\\x_1=2m-2m+3=3\end{matrix}\right.\)
Thay vào (2) ta được \(6m-9=2m-1\Leftrightarrow m=2\)
cho pt x2 +m -2= mx+x(x là ẩn số)
chứng tỏ pt luôn có hai nghiệm phân biệt x1 ;x2
\(\Rightarrow x^2-mx-x+m-2=0\) \(\Rightarrow x^{^2}-x\left(m+1\right)+m-2=0\)
\(\)\(\Delta=\left(m+1\right)^2-4\left(m-2\right)=m^2+2m+1-4m+8=m^2-2m+9=\left(m-1\right)^2+8\ge8>0\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt x1, x2
x^2-2(m-3)x+2m-8=0
chứng minh rằng pt luôn có 2 nghiệm phân biệt với m
b) gọi x1 x2 là 2 nghiệm của pt tìm m để x1^2+x2^2=52
\(x^2-2\left(m-3\right)x+2m-8=0\left(1\right)\)
\(\Delta'=\left(m-3\right)^2-2m+8=m^2-8m+9+8=\left(m-4\right)^2+1>0\forall m\)
⇒ Phương trình hai nghiệm phân biệt
Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=2m-8\end{matrix}\right.\)
Có : \(x_1^2+x_2^2=52\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=52\)
\(\Leftrightarrow4\left(m-3\right)^2-2\left(2m-8\right)=52\)
\(\Leftrightarrow4m^2-24m+36-4m+16=52\)
\(\Leftrightarrow4m^2-28m=0\Leftrightarrow4m\left(m-7\right)=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=7\end{matrix}\right.\)
Vậy...
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
cho pt bậc hai: x2 -2mx+2m-3=0(ẩn x, tham số m).tìm m để pt có 2 nghiệm phân biệt x1,x2 thỏa mãn hệ thức (1-x12)(1-x22)=-4
\(x^2-2mx+2m-3=0\)
\(\Delta^,_x=m^2-2m+3\)
\(=\left(m-1\right)^2+2\ge2>0;\forall m\)
\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)
Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)
Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)
\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)
\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)
\(\Leftrightarrow-8m+4=-4\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)
Cho pt x2 + 2(m+1)x - 2m4 + m2 = 0 (m là tham số)
a) Giải pt khi m = 1
b) Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi m
a)
Thế m = 1 vào PT được: \(x^2+2\left(1+1\right)x-2.1^4+1^2=0\)
<=> \(x^2+4x-1=0\)
\(\Delta=16+4=20\)
\(\left\{{}\begin{matrix}x_1=-2+\sqrt{5}\\x_2=-2-\sqrt{5}\end{matrix}\right.\)
b) đề đúng chưa=)
c4
cho pt ẩn x: \(x^2-2x-m^2-4=0\)(1)
a/ giải pt đã cho khi m=\(\dfrac{1}{2}\)
b/ chứng minh pt luôn có 2 nghiệm phân biệt vs mọi m
c/ tính giá trị của m để pt (1) có 2 nghiệm x1,x2 sao cho 2x1,x2(2-3x1)=2
a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)
\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)
\(\Leftrightarrow4x^2-8x-17=0\)
\(\Leftrightarrow\left(2x-2\right)^2=21\)
hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)
b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)
\(=4+4m^2+16=4m^2+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
x^2-2(m-3)x+2m-8=0
chứng minh rằng pt luôn có 2 nghiệm phân biệt với m
do đó: phương trình luôn có 2 nghiệm phân biệt
\(\Delta'=\left[-\left(m-3\right)\right]^2-\left(2m-8\right)=m^2-6m+9-2m+8=0\\ =m^2-8m+17\\ =\left(m^2-8m+16\right)+1\\ =\left(m-4\right)^2+1\\ \left(m-4\right)^2\ge0\forall x\\ =>\left(m-4\right)^2+1>1>0\forall x\)
=> phương trình có hai nghiệm phân biệt