Cho ΔABC vuông tại A, đường cao AH (H ϵ BC). a.chứng minh ΔADN ~ ΔABM, b. Chứng minh ΔABH ~ ΔCAH
Cho tam giác ΔABC vuông tại A có AB=6cm,AC=10cm . Đường cao AH a)Chứng minh ΔABC / ΔABH b)Chứng minh AB²=BH.BC c)Tính BC,AH,BH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
a.Xét tam giác ABC và tam giác HBA, có:
^B: chung
^BAC = ^BHA = 90 độ
Vậy tam giác ABC đồng dạng tam giác HBA (g.g)
b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)
c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)
(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)
\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)
Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)
Cho ΔABC vuông tại A. Biết AB = 9cm, AC = 12cm.
a) Tính BC.
b) Kẻ AH vuông góc với BC (H ϵ BC) . Trên tia AH lấy điểm M sao cho MH = AH. Chứng minh ΔABM cân.
c) Gọi K là trung điểm của BC. Trên tia đối của tia KA lấy điểm N sao cho KN = AK. Chứng minh BM = CN.
d) Chứng minh ΔKMN = ΔKNM và MN // BC.
Ai đó bt thì giúp mình với !!!! ><
a: BC=15cm
b: Xét ΔABM có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABM cân tại B
c: Xét tứ giác ABNC có
K là trung điểm của BC
K là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: CN=AB
mà AB=BM
nên CN=BM
Cho ΔABC vuông tại A ( AB < AC ), đường cao AH ( H ϵ BC ).
1. Chứng minh: ΔHBA đồng dạng ΔABC và BA.BA=BH.BC.
2. Kẻ phân giác BE của góc ABC ( E ϵ AC ) , BE cát AH tại I .
Chứng minh : ΔHBI đồng dạng ΔABE .
3. Chứng minh : AI=AE
1.Xét ΔHBA và ΔABC có:
góc AHB=góc BAC=90o
Góc B chung
=> ΔABC đồng dạng ΔHBA (g.g)
=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)
2. Xét ΔHBI và ΔABE có:
góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)
góc BAE=góc IHB=90o
=>ΔHBI đồng dạng ΔABE (g.g)
Cho ΔABC vuông tại A có AB = 6cm, BC = 10cm và đường cao AH
a) Chứng minh: ΔABH ᔕ ΔCBA và AB2 = BH.BC
b) Tính AC, AH
c) Tia phân giác của \(\widehat{ABC}\) cắt AH, AC lần lượt tại I và D. Chứng minh: \(\dfrac{IH}{IA}\) = \(\dfrac{DA}{DC}\)
d) Tính SABI
Cho tam giác ABC vuông tại A có đường cao AH (H ϵ BC) cắt đường phân giác BD tại I . Chứng minh rằng
a; ΔABC đồng dạng với ΔHBA
b; HI / IA = AD / DC
em cần gấp ai giúp em với
a.
Xét hai tam giác vuông ABC và HBA có:
\(\left\{{}\begin{matrix}\widehat{HBA}\text{ chung}\\\widehat{BAC}=\widehat{BHA}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
b.
Do BD là phân giác góc B, áp dụng định lý phân giác cho tam giác ABC:
\(\dfrac{AD}{DC}=\dfrac{AB}{BC}\) (1)
Do BI là phân giác góc B, áp dụng định lý phân giác cho tam giác ABH:
\(\dfrac{HI}{AI}=\dfrac{BH}{AB}\) (2)
Mặt khác, từ câu a do \(\Delta ABC\sim\Delta HBA\Rightarrow\dfrac{AB}{BH}=\dfrac{BC}{BA}\Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\) (3)
(1);(2);(3) \(\Rightarrow\dfrac{HI}{IA}=\dfrac{AD}{DC}\)
Cho tam giác ABC vuông tại A, AH là đường cao (H ϵ BC)
a) Chứng minh rằng: ΔABC đồng đạng Δ HBA
b) Tính độ dài các cạnh BC,AH,HB nếu AB=15cm và SΔABC/SΔHBA= 9/25
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạg với ΔHBA
b: Sửa đề: S ABC/S HBA=25/9
=>AB/HB=BC/BA=AC/HA=5/3
=>15/HB=BC/15=AC/HA=5/3
=>HB=9cm; BC=25cm
AC=căn 25^2-15^2=20cm
AH=15*20/25=12cm
Cho ΔABC cân ở A. Trên cạnh BC lấy điểm M, N sao cho BM = CN < BC/2. Kẻ ME vuông góc với AB, NF vuông góc với AC (E ϵ AB, F ϵ AC), EM cắt FN tại H. Chứng minh:
a) ΔABM = ΔACN.
b) Gọi D là trung điểm của MN. Chứng minh AD là tia phân giác của góc BAC.
c) EF // BC.
d) Chứng mình: A, D, H thẳng hàng.
Cho ΔABC có AB = AC. Gọi M là trung điểm của BC
a) Chứng minh ΔABM = ΔACM
b)Lấy H thuộc tia đối của BM, K thuộc tia đối CM sao cho BH = CK. Chứng minh ΔABH = ΔACK
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
=> tam giác ABM = tam giác ACM (c.c.c)
Cho ΔABC vuông tại A có AB < AC kẻ đường cao AH, trên tia đối của tia HA lấy điểm D sao cho HD=HA a) chứng minh ΔABH=ΔDBH b) chứng minh rằng CB là tia phân giác của ACD
GTvà KL bạn tự ghi nha:
a)Xét ΔABH và ΔDBH, có:
Góc BHA=góc BHD=90 độ
BH là cạnh chung
AH=DH(gt)
=>ΔABH=ΔDBH (c.g.c)
b)Ta có:
góc ABH=gócHBD( vì ΔABH=ΔDBH)
Do đó BC là tia phân giác của góc ACD