b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có
góc HAB=góc HCA
=>ΔABH đồng dạng vơi ΔCAH
b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có
góc HAB=góc HCA
=>ΔABH đồng dạng vơi ΔCAH
Cho ΔABC vuông tại A ( AB < AC ), đường cao AH ( H ϵ BC ).
1. Chứng minh: ΔHBA đồng dạng ΔABC và BA.BA=BH.BC.
2. Kẻ phân giác BE của góc ABC ( E ϵ AC ) , BE cát AH tại I .
Chứng minh : ΔHBI đồng dạng ΔABE .
3. Chứng minh : AI=AE
Cho ΔABC vuông tại A có AB = 6cm, BC = 10cm và đường cao AH
a) Chứng minh: ΔABH ᔕ ΔCBA và AB2 = BH.BC
b) Tính AC, AH
c) Tia phân giác của \(\widehat{ABC}\) cắt AH, AC lần lượt tại I và D. Chứng minh: \(\dfrac{IH}{IA}\) = \(\dfrac{DA}{DC}\)
d) Tính SABI
Cho tam giác ABC vuông tại A có đường cao AH (H ϵ BC) cắt đường phân giác BD tại I . Chứng minh rằng
a; ΔABC đồng dạng với ΔHBA
b; HI / IA = AD / DC
em cần gấp ai giúp em với
Cho tam giác ABC vuông tại A, AH là đường cao (H ϵ BC)
a) Chứng minh rằng: ΔABC đồng đạng Δ HBA
b) Tính độ dài các cạnh BC,AH,HB nếu AB=15cm và SΔABC/SΔHBA= 9/25
cho tam giác ABC vuông ở A , có AB=6cm, AC=8cm. vẽ đường cao AH a, tính BC b, chứng minh ΔABC đồng dạng với ΔAHB c, chứng minh AB2=BH.BC. Tính BH, HC d, vẽ phân giác AD (D ϵ BC) tính DB
Cho tam giác ABC vuông tại A có đường cao AH ( H ϵ BC)
a) chứng minh : △ABC đồng dạng △HAC và AB. AC= AH.BC
b) chứng minh: AC2 = HC.BC
c) chứng minh : AH2= HB.HC
Cho tam giác ABC vuông tại A, AB=8cm, AC=6cm
AD là tia phân giác góc A (D ϵ BC)
a) Tính \(\dfrac{DB}{DC}\)
b) Kẻ đường cao AH (H ϵ BC). Chứng minh rằng: △ABC ~ △HBA
Cho ΔABC nhọn ( A < B ) . Đường cao BM , CN cắt nhau tại H
a) Chứng minh ΔABM = ΔACN
b) Chứng minh ΔAMN = ΔABC
c) Hạ HK vuông góc với BC ( K ∈ BC ) . Chứng minh BH.BM + CH.CN = \(BC^2\)
d) Gỉa sử góc BAC = \(60^0\) . Chứng minh : SΔAMN = \(\frac{1}{4}\) SΔABC
cho tam giác ABC vuông ở A , có AB=6cm, AC=8cm. vẽ đường cao AH a, tính BC b, chứng minh ΔABC đồng dạng với ΔAHB c, chứng minh AB2=BH.BC. Tính BH, HC d, vẽ phân giác AD của góc A(D ϵ BC) tính DB