Giải phương trình: \(\dfrac{x^2+x+3}{x+2}=3.\)
\(\dfrac{x^2-x}{x+3}\)_\(\dfrac{x^2}{x-3}\)=\(\dfrac{7x^2-3x}{9-x^2}\)
Giải Phương Trình
\(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\\ \Leftrightarrow\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=-\dfrac{7x^2-3x}{\left(x-3\right)\left(x+3\right)}\\ đkxđ:\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\\ \Leftrightarrow\dfrac{\left(x^2-x\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{7x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow\dfrac{x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\\ \Leftrightarrow\dfrac{0}{\left(x-3\right)\left(x+3\right)}=0\\ \Rightarrow0=0\left(luon.dung\right)\)
tính đạo hàm
a) \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}\)
b) \(y=x+3+\dfrac{4}{x+3}\) giải phương trình y'=0
c) \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\) tính y'(-1)
d) \(y=x-2+\dfrac{9}{x-2}\) giải phương trình y'=0
a:
ĐKXĐ: \(x\notin\left\{\dfrac{3}{2};1\right\}\)
\(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}=\dfrac{x^2-4x+4}{2x^2-2x-3x+3}\)
=>\(y=\dfrac{x^2-4x+4}{2x^2-5x+3}\)
=>\(y'=\dfrac{\left(x^2-4x+4\right)'\left(2x^2-5x+3\right)-\left(x^2-4x+4\right)\left(2x^2-5x+3\right)'}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{\left(2x-4\right)\left(2x^2-5x+3\right)-\left(2x-5\right)\left(x^2-4x+4\right)}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{4x^3-10x^2+6x-8x^2+20x-12-2x^3+8x^2-8x+5x^2-20x+20}{\left(2x^2-5x+3\right)^2}\)
=>\(y'=\dfrac{2x^3-5x^2-2x+8}{\left(2x^2-5x+3\right)^2}\)
b:
ĐKXĐ: x<>-3
\(y=\left(x+3\right)+\dfrac{4}{x+3}\)
=>\(y'=\left(x+3+\dfrac{4}{x+3}\right)'=1+\left(\dfrac{4}{x+3}\right)'\)
\(=1+\dfrac{4'\left(x+3\right)-4\left(x+3\right)'}{\left(x+3\right)^2}\)
=>\(y'=1+\dfrac{-4}{\left(x+3\right)^2}=\dfrac{\left(x+3\right)^2-4}{\left(x+3\right)^2}\)
y'=0
=>\(\left(x+3\right)^2-4=0\)
=>\(\left(x+3+2\right)\left(x+3-2\right)=0\)
=>(x+5)(x+1)=0
=>x=-5 hoặc x=-1
c:
ĐKXĐ: x<>-2
\(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\)
=>\(y=\dfrac{5x^2+5x-x-1}{x+2}=\dfrac{5x^2+4x-1}{x+2}\)
=>\(y'=\dfrac{\left(5x^2+4x-1\right)'\left(x+2\right)-\left(5x^2+4x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{\left(5x+4\right)\left(x+2\right)-\left(5x^2+4x-1\right)}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{5x^2+10x+4x+8-5x^2-4x+1}{\left(x+2\right)^2}\)
=>\(y'=\dfrac{10x+9}{\left(x+2\right)^2}\)
\(y'\left(-1\right)=\dfrac{10\cdot\left(-1\right)+9}{\left(-1+2\right)^2}=\dfrac{-1}{1}=-1\)
d:
ĐKXĐ: x<>2
\(y=x-2+\dfrac{9}{x-2}\)
=>\(y'=\left(x-2+\dfrac{9}{x-2}\right)'=1+\left(\dfrac{9}{x-2}\right)'\)
\(=1+\dfrac{9'\left(x-2\right)-9\left(x-2\right)'}{\left(x-2\right)^2}\)
=>\(y'=1+\dfrac{-9}{\left(x-2\right)^2}=\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}\)
y'=0
=>\(\dfrac{\left(x-2\right)^2-9}{\left(x-2\right)^2}=0\)
=>\(\left(x-2\right)^2-9=0\)
=>(x-2-3)(x-2+3)=0
=>(x-5)(x+1)=0
=>x=5 hoặc x=-1
giải phương trình:
\(\dfrac{2}{x-3}\) + \(\dfrac{3}{x+3}\)=\(\dfrac{7x+5}{x^2-9}\)
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{7x+5}{x^2-9}\left(x\ne3;x\ne-3\right)\\ < =>\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{7x+5}{\left(x-3\right)\left(x+3\right)}\)
suy ra:
`2(x+3)+3(x-3)=7x+5`
`<=>2x+6+3x-9=7x+5`
`<=>2x+3x-7x=5-6+9`
`<=> -2x=8`
`<=> x=-4(tm)`
ĐKXĐ: \(x\ne\pm3\)
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{7x+5}{x^2-9}\)
\(\Leftrightarrow\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{7x+5}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2\left(x+3\right)+3\left(x-3\right)=7x+5\)
\(\Leftrightarrow2x+6+3x-9=7x+5\)
\(\Leftrightarrow2x=-8\)
\(\Leftrightarrow x=-4\) (thỏa)
Vậy pt có nghiệm \(x=-4\)
giải phương trình sau:
\(\dfrac{x^2-x}{x+3}\) - \(\dfrac{x^2}{x-3}\) = \(\dfrac{7x^2-3x}{9-x^2}\)
ĐK: ` x \ne \pm 3`
`(x^2-x)/(x+3)-(x^2)/(x-3)=(7x^2-3x)/(9-x^2)`
`<=> (x^2-x)(x-3)-x^2 (x+3) = -(7x^2-3x)`
`<=> −7x^2+3x=-7x^2+3x`
`<=> 0x=0 forall x`
Vậy `S=RR \\ {+-3}`.
Giải phương trình \(\dfrac{x-1}{x+1}-\dfrac{x-2}{x-3}+\dfrac{14}{x^2-2x-3}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)-\left(x-2\right)\left(x+1\right)+14=0\)
\(\Leftrightarrow x^2-4x+3-\left(x^2-x-2\right)+14=0\)
\(\Leftrightarrow x^2-4x+17-x^2+x+2=0\)
=>-3x+19=0
hay x=19/3(nhận)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne-1\\x\ne3\end{matrix}\right.\)
\(\dfrac{x-1}{x+1}-\dfrac{x-2}{x-3}+\dfrac{14}{x^2-2x-3}=0\\ \Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-3\right)}+\dfrac{14}{\left(x+1\right)\left(x-3\right)}=0\\ \Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)-\left(x+1\right)\left(x-2\right)+14}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Rightarrow\left(x^2-4x+3\right)-\left(x^2-x-2\right)+14=0\\ \Leftrightarrow x^2-4x+3-x^2+x+2+14=0\)
\(\Leftrightarrow-3x+19=0\\ \Leftrightarrow x=\dfrac{19}{3}\left(tm\right)\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{19}{3}\right\}\)
Giải phương trình:
\(\dfrac{1}{2}\)(x + 1) + \(\dfrac{1}{4}\)(x + 3) = 3 - \(\dfrac{1}{3}\)(x + 2)
\(\rightarrow\dfrac{1}{2}x+\dfrac{1}{2}+\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{3}x-\dfrac{2}{3}\)
\(\rightarrow\dfrac{1}{2}x+\dfrac{1}{4}x+\dfrac{1}{3}x=3-\dfrac{2}{3}-\dfrac{1}{2}-\dfrac{3}{4}\)
\(\rightarrow\dfrac{13}{12}x=\dfrac{13}{12}\)
\(\rightarrow x=1\)
\(\dfrac{x+2}{x-3}+\dfrac{x}{x+2}=\dfrac{x^2+6}{x^2-x-6}\)
Giải phương trình
=>x^2-4+x^2-3x=x^2+6
=>x^2-3x-4=6
=>x^2-3x-10=0
=>(x-5)(x+2)=0
=>x=5(nhận) hoặc x=-2(loại)
Giải phương trình:
\(\dfrac{x}{x-3}\) + \(\dfrac{x}{x+2}\) = \(\dfrac{3x+6}{\left(x-3\right)\left(x+2\right)}\)
\(\dfrac{x}{x-3}+\dfrac{x}{x+2}=\dfrac{3x+6}{\left(x-3\right)\left(x+2\right)}\) (1)
ĐKXĐ: \(x\ne3;x\ne-2\)
\(\left(1\right)\Leftrightarrow x\left(x+2\right)+x\left(x-3\right)=3x+6\)
\(\Leftrightarrow x^2+2x+x^2-3x=3x+6\)
\(\Leftrightarrow2x^2-4x-6=0\)
\(\Leftrightarrow2\left(x^2-2x-3\right)=0\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0;x-3=0\)
*) \(x+1=0\)
\(\Leftrightarrow x=-1\) (nhận)
*) \(x-3=0\)
\(\Leftrightarrow x=3\) (loại)
Vậy \(S=\left\{-1\right\}\)
Giải phương trình: \(x-\dfrac{\dfrac{x}{3}-\dfrac{3+x}{2}}{4}=\dfrac{x-\dfrac{15-7x}{3}}{4}-2x+3\)
\(x-\dfrac{\dfrac{x}{3}-\dfrac{3+x}{2}}{4}=\dfrac{x-\dfrac{15-7x}{3}}{4}-2x+3\)
\(<=>4x-\dfrac{x}{3}+\dfrac{3+x}{2}=x-\dfrac{15-7x}{3}-8x+12\)
`<=>24x-2x+3(3+x)=6x-2(15-7x)-48x+72`
`<=>24x-2x+9+3x=6x-30+14x-48x+72`
`<=>53x=33`
`<=>x=33/53`
1) GIẢI phương trình :
a) 2x-6=0
b) x2-4x=0
c)\(\dfrac{x+2}{x-3}\)-\(\dfrac{3}{x}\)=\(\dfrac{x+9}{x^2-3x}\)
d) \(\dfrac{x-1}{2}\)-\(\dfrac{x-2}{3}\)=x-\(\dfrac{x-3}{4}\)
giải chi tiết giúp mik ah
a) \(2x-6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=\dfrac{6}{2}=3\)
b) \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)