\(\dfrac{x^2+x+3}{x+2}=3\left(x\ne-2\right)\)
suy ra
`x^2 +x+3=3x+6`
`<=> x^2 +x-3x-6+3=0`
`<=> x^2 -2x-3=0`
`<=> x^2 -3x+x-3=0`
`<=> x(x-3)+(x-3)=0`
`<=> (x-3)(x+1)=0`
\(< =>\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Điều kiện `x ne 2`
Đề
`=> x^2 + x + 3 = 3(x+2)`
`=> x^2 + x + 3 = 3x + 6`
`=> x^2 - 2x - 3 = 0`
`=> x^2 + x - 3x - 3 = 0`
`=> (x^2 + x) - (3x + 3) = 0`
`=> (x+1)(x+3) = 0`
`=> x + 1 = 0` hoặc `x + 3 = 0`
`=> x = -1` hoặc `x = -3` (T/m)