Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Lợi
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 4 2019 lúc 14:00

\(\frac{sinx+sin5x+sin3x}{cosx+cos5x+cos3x}=\frac{2sin3x.cos2x+sin3x}{2cos3x.cos2x+cos3x}=\frac{sin3x\left(2cos2x+1\right)}{cos3x\left(2cos2x+1\right)}=\frac{sin3x}{cos3x}=tan3x\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:13

\(\dfrac{2}{sinx}-\dfrac{sinx}{1+cosx}\)

\(=\dfrac{2+2cosx-sin^2x}{sinx\left(1+cosx\right)}=\dfrac{2\left(1+cosx\right)-\left(1-cos^2x\right)}{sinx\left(1+cosx\right)}\)

\(=\dfrac{\left(1+cosx\right)\left(2-1+cosx\right)}{sinx\left(1+cosx\right)}=\dfrac{cosx+1}{sinx}\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:13

\(\dfrac{1}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{1+sinx-cos^2x}{cosx\left(1+sinx\right)}\)

\(=\dfrac{\left(1+sinx\right)-\left(1+sinx\right)\left(1-sinx\right)}{cosx\left(1+sinx\right)}\)

\(=\dfrac{\left(1+sinx\right)\left(1-1+sinx\right)}{\left(1+sinx\right)\cdot cosx}=\dfrac{sinx}{cosx}=tanx\)

=>ĐPCM

Huyen My
Xem chi tiết
van hoan Dao
Xem chi tiết
tran duc huy
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 8 2020 lúc 23:23

1.

\(\Leftrightarrow sin5x+\sqrt{3}cos5x=-2sin15x\)

\(\Leftrightarrow\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x=-sin15x\)

\(\Leftrightarrow sin\left(5x+\frac{\pi}{3}\right)=sin\left(-15x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+\frac{\pi}{3}=-15x+k2\pi\\5x+\frac{\pi}{3}=\pi+15x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{60}+\frac{k\pi}{10}\\x=-\frac{\pi}{15}+\frac{k\pi}{5}\end{matrix}\right.\)

Nguyễn Việt Lâm
15 tháng 8 2020 lúc 23:28

2.

\(\Leftrightarrow\left(\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x\right)+\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=2\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)=2\)

Do \(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)\le1\\sin\left(x+\frac{\pi}{6}\right)\le1\end{matrix}\right.\) với mọi x

\(\Rightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)\le2\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)=1\\sin\left(x+\frac{\pi}{6}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\frac{\pi}{3}+k2\pi\)

Nguyễn Việt Lâm
15 tháng 8 2020 lúc 23:30

3.

\(\Leftrightarrow cos7x+\sqrt{3}sin7x=sin5x+\sqrt{3}cos5x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin7x+\frac{1}{2}cos7x=\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\)

\(\Leftrightarrow sin\left(7x+\frac{\pi}{6}\right)=sin\left(5x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}7x+\frac{\pi}{6}=5x+\frac{\pi}{3}+k2\pi\\7x+\frac{\pi}{6}=\frac{2\pi}{3}-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{\pi}{24}+\frac{k\pi}{6}\end{matrix}\right.\)

quangduy
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2019 lúc 22:09

Giả sử các biểu thức đã cho đều xác định

a/ \(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+\dfrac{sin^2x}{cos^2x}+1+tan^2x+tan^2x=1+2tan^2x\)

b/ \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{sin^2x+\left(1+cosx\right)^2}{\left(1+cosx\right)sinx}=\dfrac{sin^2x+cos^2x+2cosx+1}{\left(1+cosx\right)sinx}\)

\(=\dfrac{1+2cosx+1}{\left(1+cosx\right)sinx}=\dfrac{2+2cosx}{\left(1+cosx\right)sinx}=\dfrac{2\left(1+cosx\right)}{\left(1+cosx\right)sinx}=\dfrac{2}{sinx}\)

c/ \(\dfrac{1-sinx}{cosx}=\dfrac{\left(1-sinx\right)cosx}{cos^2x}=\dfrac{\left(1-sinx\right)cosx}{1-sin^2x}\)

\(\dfrac{\left(1-sinx\right)cosx}{\left(1-sinx\right)\left(1+sinx\right)}=\dfrac{cosx}{1+sinx}\)

Nguyễn Việt Lâm
2 tháng 3 2019 lúc 22:17

d/ \(\left(1-cosx\right)\left(1+cot^2x\right)=\left(1-cosx\right).\dfrac{1}{sin^2x}\)

\(=\dfrac{1-cosx}{1-cos^2x}=\dfrac{1-cosx}{\left(1-cosx\right)\left(1+cosx\right)}=\dfrac{1}{1+cosx}\)

e/ \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=1-\dfrac{sin^3x}{sinx\left(1+\dfrac{cosx}{sinx}\right)}-\dfrac{cos^3x}{cosx\left(1+\dfrac{sinx}{cosx}\right)}\)

\(=1-\left(\dfrac{sin^3x}{sinx+cosx}+\dfrac{cos^3x}{sinx+cosx}\right)=1-\left(\dfrac{sin^3x+cos^3x}{sinx+cosx}\right)\)

\(=1-\left(\dfrac{\left(sinx+cosx\right)\left(sin^2x-sinx.cosx+cos^2x\right)}{sinx+cosx}\right)\)

\(=1-\left(1-sinx.cosx\right)=sinx.cosx\)

f/ Bạn ghi đề sai à?

NGUYỄN MINH HUY
28 tháng 1 2020 lúc 10:35

câu f sai đề rồi

Khách vãng lai đã xóa
Nguyen Tuan Anh
Xem chi tiết
Nguyễn Minh Châu
Xem chi tiết