Những câu hỏi liên quan
Diêm Công Lĩnh
Xem chi tiết
thu thương
Xem chi tiết
Nguyễn Thị Anh
19 tháng 6 2016 lúc 8:08

Bài 1:ta có a+b+c=0

=> a+b=-c      ;     a+c=-b           ;           b+c=-a

M= a(a+b)(a+c)= a(-c)(-b)=abc

N = b(b+c)(b+a)=b(-a)(-c)=abc

P=c(c+a)(c+b)= c(-b)(-a)=abc

=> M=N=P

Bình luận (0)
Nguyễn Thị Anh
19 tháng 6 2016 lúc 8:16

vế trái= \(\left(b+c\right)^2\)-a2=(a+b+c)(b+c-a) = 2p(2p-a-a)=4p(p-a)= VP

=> đpcm

Bình luận (0)
Muichirou- san
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2023 lúc 19:15

\(2bc+b^2+c^2-a^2\)

\(=\left(b+c\right)^2-a^2\)

\(=\left(b+c+a\right)\cdot\left(b+c-a\right)\)

\(=2p\cdot\left(2p-a-a\right)\)

\(=4p\left(p-a\right)\)

Bình luận (0)
anhmiing
Xem chi tiết
T.Ps
10 tháng 7 2019 lúc 9:17

#)Giải :

Ta có : \(a+b+c=2p\)

\(\Rightarrow b+c=2p-a\)

\(\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)

\(\Rightarrow b^2+c^2+2bc=4p^2-4pa+a^2\)

\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)

\(\Rightarrowđpcm\)

Bình luận (0)
Phạm Mỹ Hạnh
Xem chi tiết
phan van bao
Xem chi tiết
tth_new
26 tháng 3 2020 lúc 10:38

Rất khủng khiếp (tại cái chương trình của em nó xấu:v) nhưng nó là một cách chứng minh:

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\frac{27\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2\ge\frac{27\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}\)

Sau khi quy đồng, ta cần chứng minh biểu thức sau đây không âm:

Hiển nhiên đúng vì \(x=min\left\{x,y,z\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
Maxx
Xem chi tiết
Vladislav Hoàng
11 tháng 12 2020 lúc 23:19

1/a+1/b+1/c=0

=>(ab+ac+bc)/abc=0

=> ab+ac+bc=0

(a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)=0

=> a^2+b^2+c^2=0

Bạn xem lại đề nhé.

Bình luận (0)
Trần Ngọc Hoàng
Xem chi tiết
nguyễn thị huyền trang
23 tháng 10 2016 lúc 21:38

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

Bình luận (0)
Thái Viết Nam
23 tháng 10 2016 lúc 14:42

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

Bình luận (0)
nguyen van bi
7 tháng 12 2020 lúc 19:20

bạn hỏi từ từ thôi

Bình luận (0)
 Khách vãng lai đã xóa
Homin
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 4 2023 lúc 10:16

BĐT cần chứng minh tương đương:

\(a^2+b^2+c^2\ge2ab-2bc+2ca\)

\(\Leftrightarrow a^2+b^2+c^2+2bc-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow a^2+\left(b+c\right)^2-2a\left(b+c\right)\ge0\)

\(\Leftrightarrow\left(a-b-c\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

Bình luận (0)