Cho elip \(\left(E\right):\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\)
Tìm tọa độ các đỉnh, các tiêu điểm và vẽ elip đó ?
Cho elip \(\left(E\right):\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\)
Tìm tọa độ các đỉnh, các tiêu điểm và vẽ elip đó ?
Ta có: a2 = 16 => a = 4,b = 9 => b = 3 .
Mặt khác: c2 = a2 - b2 = 16 - 9 = 7 => c = \(\sqrt{7}\)
Tọa độ các đỉnh: A1 (-4;0), A2 (4;0), B1 (0;-3), B1 (0;-3), B2 (0;3) .
Tọa độ tiêu điểm: F1(-\(\sqrt{7}\);0),F2(\(\sqrt{7}\);0) .
Cho hình sau:
Trong mặt phẳng với hệ trục tọa độ $Oxy$, cho elip $\left( E \right)$ có phương trình: $\dfrac{{ x^2}}{9}+\dfrac{{{y}^2}}{4}=1$. Gọi ${{F}_{1}}, \, {{F}_2}$ là hai tiêu điểm của $\left( E \right)$. Tìm điểm $M$thuộc $\left( E \right)$ sao cho góc $\widehat{{{F}_{1}}M{{F}_2}}$ bằng ${{90}^{\circ}}$.
Gọi M(x,y)
Trong (E) có : \(c=\sqrt{a^2-b^2}=\sqrt{5}\)
Từ đó ta có : \(F_1\left(\sqrt{5};0\right);F_2\left(-\sqrt{5};0\right)\); \(F_1F_2=2\sqrt{5}\)
=> \(\overrightarrow{F_1M}\left(x-\sqrt{5};y\right)\Rightarrow F_1M^2=\left(x-\sqrt{5}\right)^2+y^2\)
tương tự \(F_2M^2=\left(x+\sqrt{5}\right)^2+y^2\)
Do \(\widehat{F_1MF_2}=90^{\text{o}}\) nên tam giác F1MF2 vuông tại M
=> F1M2 + F2M2 = F1F22
<=> \(\left(x-\sqrt{5}\right)^2+y^2+\left(x+\sqrt{5}\right)^2+y^2=20\)
\(\Leftrightarrow x^2+y^2=5\)
Lại có \(M\in\left(E\right)\Rightarrow\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)
từ đó ta có hệ \(\left\{{}\begin{matrix}x^2+y^2=5\\\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=\dfrac{9}{5}\\y^2=\dfrac{16}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{3\sqrt{5}}{5}\\y=\pm\dfrac{4\sqrt{5}}{5}\end{matrix}\right.\)
Trong mặt phẳng tọa độ $Oxy$, cho elip $\left( E \right):\dfrac{{ x^2}}{4}+{{y}^2}=1.$ Gọi ${{F}_{1}};{{F}_2}$ là hai tiêu điểm của $\left( E \right)$ và điểm $M\in \left( E \right)$ sao cho $M{{F}_{1}}\bot M{{F}_2}$. Tính $M{{F}_{1}}^2+M{{F}_2}^2$ và diện tích $\Delta M{{F}_{1}}{{F}_2}.$
Cho elip \(\left( E \right)\) có phương trình chính tắc \(\frac{{{x^2}}}{{49}} + \frac{{{y^2}}}{{25}} = 1\) .Tìm tọa độ các giao điểm của \(\left( E \right)\) với trục Ox, Oy và tọa độ các tiêu điểm của \(\left( E \right)\).
Từ phương trình chính tắc của (E) ta có: \(a = 7,b = 5 \Rightarrow c = 2\sqrt 6 {\rm{ }}(do{\rm{ }}{{\rm{c}}^2} + {b^2} = {a^2})\)
Vậy ta có tọa độ các giao điểm của (E) với trục Ox, Oy là: \({A_1}\left( { - 7;{\rm{ }}0} \right)\)\({A_2}\left( {7;{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ 5}}} \right)\)\({B_2}\left( {0;{\rm{ 5}}} \right)\)
Hai tiêu điểm của (E) có tọa độ là: \({F_1}\left( { - 2\sqrt 6 ;0} \right),{F_2}\left( {2\sqrt 6 ;0} \right)\)
Câu 4. Biết elip $\left( E \right): \, \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$, $\left( a>b>0 \right)$ đi qua hai điểm $A\left( 2\,;\,0 \right)$, $B\left( 1\,;\,\dfrac{\sqrt{3}}{2} \right)$. Tìm $a\,;\,b$.
+,Ta có :A thuộc E => thay x=2 và y=0 vào E ta đc a^2=4 => a=2 (loại a=-2 vì a<0 )
+, Tương tự thay B vào E => 3b^2=3 =>b=1(loại b=-1 vì b <0)
=> vậy a =2 b =1
học tốt ! :)))
Biết elip $\left( E \right): \, \dfrac{{ x^2}}{{{a}^2}}+\dfrac{{{y}^2}}{{{b}^2}}=1$ $\left( a>b>0 \right)$ đi qua hai điểm $A\left( 2\,;\,0 \right)$, $B\left( 1\,;\,\dfrac{\sqrt{3}}2 \right)$. Tìm $a\,,\,b$.
Theo đề ra ta có hệ :
\(\left\{{}\begin{matrix}\dfrac{4}{a^2}=1\\\dfrac{1}{a^2}+\dfrac{\dfrac{3}{4}}{b^2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\\dfrac{\dfrac{3}{4}}{b^2}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy (a,b) = (2,1)
Rút gọn:
a) \(\dfrac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}\)
b) \(\dfrac{6x^2y^2}{8xy^5}\)
c) \(\dfrac{3x\left(1-x\right)}{2\left(x-1\right)}\)
d) \(\dfrac{9-\left(x+5\right)^2}{x^2+4x+4}\)
e) \(\dfrac{x^2-2x+1}{x^2-1}\)
f) \(\dfrac{8x-4}{8x^3-1}\)
g) \(\dfrac{x^2+5x+6}{x^2+4x+4}\)
k) \(\dfrac{20x^2-45}{\left(2x+3\right)^2}\)
a: \(=\dfrac{x-z}{2}\)
b: \(=\dfrac{3x}{4y^3}\)
tính giá trị biểu thức sau
a) \(A=\dfrac{25^6}{5^3}\)
b) \(B=32.\left(\dfrac{3}{2}\right)^5\)
c) \(C=\left(\dfrac{1}{3}\right)^4.3^{-3}\)
d) \(D=4^{-2}.\left(\dfrac{2}{5}\right)^5.5^4\)
e) \(E=9^{-5}:\left(\dfrac{5}{3}\right)^4.25^2\)
f) \(F=\left(\dfrac{5}{8}\right)^{-2}:4^2\)
g) \(G=\left(\dfrac{5}{3}\right)^3.\left(\dfrac{9}{2}\right)^2:\left(\sqrt{3}\right)^4\)
a: \(A=\dfrac{25^6}{5^3}=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
b: \(B=32\cdot\left(\dfrac{3}{2}\right)^5=32\cdot\dfrac{3^5}{2^5}=32\cdot\dfrac{243}{32}=243\)
c: \(C=\left(\dfrac{1}{3}\right)^4\cdot3^{-3}=3^{-4}\cdot3^{-3}=3^{-4-3}=3^{-7}\)
d: \(D=4^{-2}\cdot\left(\dfrac{2}{5}\right)^5\cdot5^4\)
\(=\dfrac{1}{4^2}\cdot\dfrac{2^5}{5^5}\cdot5^4\)
\(=\dfrac{1}{16}\cdot\dfrac{32}{5}=\dfrac{2}{5}\)
e: \(E=9^{-5}:\left(\dfrac{5}{3}\right)^4\cdot25^2\)
\(=\dfrac{1}{9^5}:\dfrac{5^4}{3^4}\cdot\left(5^2\right)^2\)
\(=\dfrac{1}{3^{10}}\cdot\dfrac{3^4}{5^4}\cdot5^4=\dfrac{1}{3^6}\)
f: \(F=\left(\dfrac{5}{8}\right)^{-2}:4^2\)
\(=\left(1:\dfrac{5}{8}\right)^2:4^2\)
\(=\left(\dfrac{8}{5}\right)^2\cdot\dfrac{1}{16}=\dfrac{64}{25}\cdot\dfrac{1}{16}=\dfrac{4}{25}\)
g: \(G=\left(\dfrac{5}{3}\right)^3\cdot\left(\dfrac{9}{2}\right)^2:\left(\sqrt{3}\right)^4\)
\(=\dfrac{5^3}{3^3}\cdot\dfrac{9^2}{2^2}:9\)
\(=\dfrac{5^3\cdot3^4}{3^3\cdot2^2}\cdot\dfrac{1}{3^2}\)
\(=\dfrac{125}{2^2\cdot3}=\dfrac{125}{3\cdot4}=\dfrac{125}{12}\)
\(A=\dfrac{\left(5^2\right)^6}{5^3}=\dfrac{5^{12}}{5^3}=5^9\)
\(B=32.\left(\dfrac{3}{2}\right)^5=\dfrac{2^5.3^5}{2^5}=2^5\)
\(C=\left(\dfrac{1}{3}\right)^4.3^{-3}=\dfrac{1}{3^4.3^3}=\dfrac{1}{3^7}\)
\(D=4^{-2}.\left(\dfrac{2}{5}\right)^5.5^4=\dfrac{1}{\left(2^2\right)^2}.\dfrac{2^5}{5^5}.5^4=\dfrac{2}{5}\)
\(E=\dfrac{1}{9^5}.\dfrac{3^4}{5^4}.\left(5^2\right)^2=\dfrac{1}{3^{10}}.\dfrac{3^4}{5^4}.5^4=\dfrac{1}{3^6}\)
\(F=\dfrac{8^2}{5^2}:\left(2^2\right)^2=\dfrac{\left(2^3\right)^2}{5^2.2^4}=\dfrac{2^6}{5^2.2^4}=\dfrac{2^2}{5^2}\)
\(G=\dfrac{5^3}{3^3}.\dfrac{\left(3^2\right)^2}{2^2}:3^2=\dfrac{5^3}{3^3}.\dfrac{3^4}{2^2}.\dfrac{1}{3^2}=\dfrac{5^3}{3.2^2}\)
Xét tính chẵn lẻ của các hàm số sau
c) y = \(\sqrt{2x+9}\)
d) y = \(\left(x-1\right)^{2010}+\left(x+1\right)^{2010}\)
e) y = \(\dfrac{x^4+3x^2-1}{x^2-4}\)
f) y = \(\left|x\right|^7.x^3\)
g) y = \(\sqrt[3]{5x-3}+\sqrt[3]{5x+3}\)
h) y = \(\sqrt{3+x}-\sqrt{3-x}\)
GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP
e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)
Vậy: f(x) là hàm số chẵn
\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)
Vậy hàm số lẻ
\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)
Vậy hàm số chẵn
\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)
Vậy hàm số lẻ
\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)
Vậy hàm số lẻ
Cho elip $\left( E \right): \, \dfrac{{ x^2}}{36}+\dfrac{{{y}^2}}{25}=1$. Xác định tiêu điểm, tiêu cự, trục lớn, trục bé, tâm sai của elip đó.
Có \(c=\sqrt{a^2-b^2}=\sqrt{11}\)
Tiêu điểm \(F_1\left(\sqrt{11},0\right);F_2\left(-\sqrt{11},0\right)\)
Tiêu cự \(F_1F_2=2\sqrt{11}\)
Trục lớn : 2a = 12
Trục bé 2b = 10
Tâm sai \(e=\dfrac{c}{a}=\dfrac{\sqrt{11}}{6}\)