Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thịnh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 10:53

a: Xét (O) có

CA,CM là tiếp tuyến

nênCA=CM và OC là phân giác của góc AOM(1)

mà OA=OM

nên OC là trung trực của AM

=>OC vuông góc với AM

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Xét (O)có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>MB vuông góc MA

=>MB//OC

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ

=>OC vuông góc với OD

mà OM vuông góc DC

nên MC*MD=OM^2

=>AC*BD=R^2

c: Gọi H là trung điểm của CD

Xét hình thang ABDC có

H,O lần lượtlà trung điểm của CD,AB

nên HO là đường trung bình

=>HO//AC//BD

=>HO vuông góc với AB

=>AB là tiếp tuyến của (H)

Thầy Tùng Dương
Xem chi tiết
Nhật Nam
22 tháng 8 2021 lúc 16:27

Kẻ OI  AB ( I  CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.

Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.

Ta có IO=CA+DB2 =MC+MD2 =DC2  là bán kính của đường tròn (I).

Do đó AB tiếp xúc với đường tròn đường kính CD.

Khách vãng lai đã xóa
Phương Vy
22 tháng 8 2021 lúc 20:49

Kẻ OI \bot AB ( I \in CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.

Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.

Ta có IO=\dfrac{CA+DB}{2}=\dfrac{MC+MD}{2}=\dfrac{DC}{2} là bán kính của đường tròn (I).

Do đó AB tiếp xúc với đường tròn đường kính CD.

Khách vãng lai đã xóa
Nguyễn Thị Thu Hiền
27 tháng 8 2021 lúc 20:29

Gọi I là trung điểm của CD. (1)

Có O là trung điểm AB. (2)

Vì CA,CM,DM,DB là các tiếp tuyến đường tròn (O) thứ tự tại A,M,B

⇒ CA=CM, DB=DM; CA, DB cùng vuông góc với AB.

⇒ Tứ giác ACDB là hình thang vuông. (3)

Từ (1),(2),(3) ⇒ OI là đường trung bình của hình thang ACDB. (4)

⇒ OI = \(\dfrac{CA+DB}{2}\) = \(\dfrac{MC+MD}{2}\)   

⇒ OI = DC : 2 

⇒ OI là bán kính đường tròn đường kính DC. (5)

Từ (4) ⇒ OI vuông góc với AB tại O (6)

Từ (5) và (6) ⇒ AB tiếp xúc với đường tròn đường kính AB tại O.

 

 
Khách vãng lai đã xóa
hngan
Xem chi tiết
hngan
18 tháng 2 2022 lúc 6:04

giúp em với a cần gấp 

 

Nguyễn Lê Phước Thịnh
18 tháng 2 2022 lúc 10:00

a: Xét (O) có 

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

DO đó; OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{DOC}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

hay ΔODC vuông tại O

b: Xét ΔODC vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

eytwerh
Xem chi tiết
Phan Nguyễn Văn Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 13:54

a: góc OAC+góc OMC=180 độ

=>OACM nội tiếp

b: góc BOM=2*60=120 độ

=>góc BDM=60 độ

=>ΔBMD đều

\(S_{qMB}=\dfrac{pi\cdot R^2\cdot120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)

Khiêm Nguyễn Gia
Xem chi tiết
Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 21:29

a: góc ADB=1/2*sđ cung AB=90 độ

=>AD vuông góc MB

Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC tại E

góc AEM=góc ADM=90 độ

=>AEDM nội tiếp

b: Xét ΔMAB vuông tại A có AD vuông góc MB

nên MA^2=MD*MB

Ánh Hồng
Xem chi tiết
James Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 22:36

a: Xét (O) có

DM là tiếp tuyến

DA là tiếp tuyến

Do đó: OD là tia phân giác của góc MOA(1)

Xét (O) có 

EM là tiếp tuyến

EB là tiếp tuyến

Do đó: OE là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra ΔDOE vuông tại O

Sally Nguyễn
Xem chi tiết