Câu 3: Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa
đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B).
a) Chứng minh: AMCO và AMDE là các tứ giác nội tiếp đường tròn.
b) Chứng minh .
c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH.
BT: Cho nửa đường tròn (O;R) đường kính AB. Kẻ 2 tiếm tuyến Ax, By của nửa đường tròn (O). Qua M thuộc nửa đường tròn ( M ≠ A và B), kẻ tiếp tuyến với nửa đường tròn cắt các tia Ax và By theo thứ tự tại C và D
a, C/m: ΔCOD vuông
b, C/m: AC.BD = R2
c, Kẻ MH ⊥ AB. C/m: BC đi qua trung điểm của MH
CHo nửa đường tròn tâm O đường kính AB=2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB.TỪ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm).AC cắt OM tại E;MB cắt nửa (O) tại D (D khác B)
a/AMCO và AMDE là các tứ giác nội tiếp
b/MNCD là tứ giác nội tiếp
Cho nửa đường tròn (O, R) đường kính AB cố định. Qua Avà B vẽ các tiếp tuyến với nửa đường tròn (O).Từ một điểm M tùy ý trên nửa đường tròn (M khác A và B) vẽ tiếp tuyến thứ ba với nửa đường tròn cắt các tiếp tuyến tại A và B theo thứ tự tương ứng là H và K
Chứng minh 4 điểm A,H,M,O cùng nằm trên một đường tròn.
a) Chứng minh AH + BK = HK, b)Tính số đo góc HOK
c)Chứng minh tam giác HAO đồng dạng tam giác AMB và HO.MB = 2R2
cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn ( M không trùng với A,B ). trong nửa mặt phẳng chứa nửa đường tròn có bờ là đường thẳng AB kẻ tiếp tuyến Ax. đường thẳng BM cắt x tại I, tia phân giác góc IAM cắt nửa đường tròn tâm O tại E, cắt IB tại F, đường thẳng BE cắt AM tại K.
a) cm 4 điểm F,E,K,M cùng thuộc 1 đường tròn
b) cm AI2 =IM.IB
cho đường tròn (O;R) , đường kính AB . kẻ tiếp tuyến Ax với đường tròn . trên tia Ax lấy điểm K(AK>R) . Qua k kẻ tiếp tuyến KM tới đường tròn (O). đường thẳng d vuông góc với AB tại O, d cắt MB tại E.
1.chứng minh KAOM là tứ giác nội tiếp
2. OK cắt AM tại I , chứng minh OI.OK=R^2
3 . gọi H là trực tâm tam giác KMA . tìm quỹ tích điểm H khi K chuyển động trên tia Ax
cho nửa đường tròn tâm o đường kính ab cố định. gọi c là điểm chính giữa của cung ab và m là điểm bất kì thuộc cung ac. bm cắt oc tại d. tiếp tuyến với nửa đường tròn tâm o tại điểm m cắt đường cd tại điểm e.
Cm:a)bd,bm ko có giá trị phụ thuộc vào vị trí điểm m
b)ed=em.
Cho đường tròn (O), dây AB khác đường kính. Qua O kẻ đường vuông góc với AB, cắt tiếp tuyến tại A của đường tròn ở điểm C.
a) Chứng minh rằng CB là tiếp tuyến của đường tòn.
b) Vẽ đường kính BD. Chứng minh AD // OH
c) Cho bán kính của đường tròn bằng 15cm, AB=24cm. Tính độ dài
Cho đường tròn tâm (O), đường kính bằng 6cm và điểm A sao cho OA = 6cm. Vẽ tiếp tuyến Ab với đường tròn (O) (B là tiếp điểm). Vẽ dây BC vuông góc với OA tại I
a) Tính độ dài AB, BI
b) Chứng minh AC là tiếp tuyến của (O)
c) Đoạn thẳng OA cắt đường tròn (O) tại M. Qua m vẽ tiếp tuyến với (O). Tiếp tuyến này cắt AB, AC lần lượt tại D và E. Tính số đo góc DOE