Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kinder
Xem chi tiết
Hồng Phúc
1 tháng 6 2021 lúc 9:13

1.

\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)

\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)

Hồng Phúc
1 tháng 6 2021 lúc 9:23

2.

\(sinx-\sqrt{3}cosx=2sin5\text{​​}x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)

Ha My
Xem chi tiết
Hoàng Tử Hà
3 tháng 2 2021 lúc 16:48

a/ \(\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sin\left(\dfrac{\pi}{6}-x\right)=\dfrac{\sqrt{2}}{2}\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{6}-x=\dfrac{\pi}{4}+k2\pi\\\dfrac{\pi}{6}-x=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k2\pi\\x=-\dfrac{7\pi}{12}+k2\pi\end{matrix}\right.\)

b/ \(\cos x=0\) ko la nghiem cua pt

\(\cos x\ne0\Rightarrow pt\Leftrightarrow5\tan^2x+\tan x-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\tan x=1\\\tan x=-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow...\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:30

a/

\(\Leftrightarrow sinx+cosx=\sqrt{2}sin2x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}sin2x\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=sin2x\)

\(\Rightarrow\left[{}\begin{matrix}2x=x+\frac{\pi}{4}+k2\pi\\2x=\frac{3\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{\pi}{4}+\frac{k2\pi}{3}\end{matrix}\right.\)

b/

\(\Leftrightarrow\frac{1-cos2x}{2}+sin2x=\frac{3\left(1+cos2x\right)}{2}\)

\(\Leftrightarrow sin2x-2cos2x=1\)

\(\Leftrightarrow\frac{1}{\sqrt{5}}sin2x-\frac{2}{\sqrt{5}}cos2x=\frac{1}{\sqrt{5}}\)

Đặt \(\frac{1}{\sqrt{5}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Leftrightarrow sin2x.cosa-cos2a.sina=cosa\)

\(\Leftrightarrow sin\left(2x-a\right)=cosa=sin\left(\frac{\pi}{2}-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-a=\frac{\pi}{2}-a+k2\pi\\2x-a=a-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=a-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:33

c/

\(\Leftrightarrow sinx-sin^2x=cosx-cos^2x\)

\(\Leftrightarrow sinx-cosx-\left(sin^2x-cos^2x\right)=0\)

\(\Leftrightarrow sinx-cosx-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(1-sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\1-sinx-cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\\1-\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:36

d/

\(\Leftrightarrow2\left(sinx-cosx\right)\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(sinx-cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\2\left(1+sinx.cosx\right)=\sqrt{3}cos2x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow2+2sinx.cosx=\sqrt{3}cos2x\)

\(\Leftrightarrow2+sin2x=\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=-1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=-1\)

\(\Leftrightarrow2x-\frac{\pi}{3}=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{12}+k\pi\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 20:18

a: tan x=căn 3

=>sin x/cosx=căn 3

=>sin x=cosx*căn 3

\(A=\dfrac{\left(cosx\cdot\sqrt{3}\right)^2}{\left(cosx\cdot\sqrt{3}\right)^2-cos^2x}=\dfrac{3}{3-1}=\dfrac{3}{2}\)

b: cot x=-căn 3

=>cosx=-sinx*căn 3

\(A=\dfrac{sinx+4\cdot sinx\cdot\sqrt{3}}{2\cdot sinx+sinx\cdot\sqrt{3}}=\dfrac{1+4\sqrt{3}}{2+\sqrt{3}}=\left(4\sqrt{3}+1\right)\left(2-\sqrt{3}\right)\)

=8căn 3-12+2-căn 3

=7căn 3-10

Akai Haruma
31 tháng 7 2023 lúc 20:49

Lời giải:

\(A=\frac{1}{\frac{\sin ^2x-\cos ^2x}{\sin ^2x}}=\frac{1}{1-(\frac{\cos x}{\sin x})^2}=\frac{1}{1-(\frac{1}{\tan x})^2}=\frac{1}{1-(\frac{1}{\sqrt{3}})^2}=\frac{3}{2}\)

\(A=\frac{\sin x-4\cos x}{2\sin x-\cos x}=\frac{1-4.\frac{\cos x}{\sin x}}{2-\frac{\cos x}{\sin x}}=\frac{1-4\cot x}{2-\cot x}=\frac{1-4.(-\sqrt{3})}{2-(-\sqrt{3})}=-10+7\sqrt{3}\)

Nhi Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 22:02

1: ĐKXĐ: 3-cosx>0

=>cosx<3(luôn đúng)

2: ĐKXĐ: 1-sin 3x>=0

=>sin 3x<=1(luôn đúng)

3: ĐKXĐ: sin x<>0 và 2x<>pi/2+kpi

=>x<>kpi và x<>pi/4+kpi/2

4: ĐKXĐ: 2x-1>=0

=>x>=1/2

Hoàng Anh
Xem chi tiết
I
21 tháng 9 2023 lúc 15:00

a,

\(\cos^3x-\sin^3x=\cos x+\sin x\\ < =>\cos^3x-\cos x=\sin^3x-\sin x\\ < =>\cos x\left(\cos^2x-1\right)=\sin x\left(\sin^2x-1\right)\\ < =>\cos x.\left(-\sin^2x\right)=\sin x.\left(-\cos^2x\right)\\ < =>\dfrac{1}{cosx}=\dfrac{1}{sinx}\)

b,

\(2sinx+2\sqrt{3}cosx=\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}\\ < =>2sinx-\dfrac{1}{sinx}=\dfrac{\sqrt{3}}{cosx}-2\sqrt{3}cosx\\ < =>\dfrac{2sin^2x-1}{sinx}=\dfrac{\sqrt{3}.cosx.\left(1-2cos^2x\right)}{cosx}\\ < =>\dfrac{cos2x}{sinx}=\sqrt{3}.cos2x\\ < =>\dfrac{1}{sinx}=\sqrt{3}\)

Ngan Nguyen Thi Kim
Xem chi tiết
Tam Bui
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 9 2021 lúc 23:18

3.

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=cos3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{2}-3x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{2}-3x+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

Tam Bui
16 tháng 9 2021 lúc 23:07

câu 2 mình sửa lại đề bài một chút là: sin(cosx)=1 ạ

Nguyễn Việt Lâm
16 tháng 9 2021 lúc 23:16

1.

\(sin\left(sinx\right)=0\)

\(\Leftrightarrow sinx=k\pi\) (1)

Do \(-1\le sinx\le1\Rightarrow-1\le k\pi\le1\)

\(\Rightarrow-\dfrac{1}{\pi}\le k\le\dfrac{1}{\pi}\Rightarrow k=0\) do \(k\in Z\)

Thế vào (1)

\(\Rightarrow sinx=0\Rightarrow x=n\pi\)

2.

\(sin\left(cosx\right)=1\Leftrightarrow cosx=\dfrac{\pi}{2}+k2\pi\)

Do \(-1\le cosx\le1\Rightarrow-1\le\dfrac{\pi}{2}+k2\pi\le1\)

\(\Rightarrow-\dfrac{1}{2\pi}-\dfrac{1}{4}\le k\le\dfrac{1}{2\pi}-\dfrac{1}{4}\) 

\(\Rightarrow\) Không tồn tại k thỏa mãn

Pt vô nghiệm

M Thiện Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:36

2.1

a.

\(\Leftrightarrow sinx-cosx=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:38

b.

\(cosx-\sqrt{3}sinx=1\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:41

c.

\(\sqrt{3}sin\dfrac{x}{3}+cos\dfrac{x}{2}=\sqrt{2}\)

Câu này đề đúng không nhỉ? Nhìn thấy có vẻ không đúng lắm

d.

\(cosx-sinx=1\)

\(\Leftrightarrow\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 8 2020 lúc 23:19

a/

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+sin2x-1=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+sin2x-1=0\)

\(\Leftrightarrow-\frac{3}{4}sin^22x+sin2x=0\)

\(\Leftrightarrow sin2x\left(1-\frac{3}{4}sin2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=k\pi\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Nguyễn Việt Lâm
27 tháng 8 2020 lúc 23:21

b/

\(\Leftrightarrow\left(1+sin2x\right)+sinx+cosx+cos^2x-sin^2x=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2+sinx+cosx+\left(sinx+cosx\right)\left(cosx-sinx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+cosx+1+cosx-sinx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\2cosx+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
27 tháng 8 2020 lúc 23:24

c/

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}\right)cosx=2\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\\sinx-\sqrt{3}cosx=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=0\\\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=0\\sin\left(x-\frac{\pi}{3}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=k\pi\\x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)