a) \(1-cot^4x=\frac{2}{sin^2x}-\frac{1}{sin^4x}\)
b)\(\frac{1-2sinx.cosx}{cos^2-sin^2}\)\(=\frac{1-tanx}{1+tanx}\)\(\)
c)\(\frac{sin^2x}{sinx-cosx}+\frac{sinx+cosx}{1-tanx}=sinx+cosx\)
d)\(\sqrt{\frac{1+cosx}{1-cosx}}-\sqrt{\frac{1-cosx}{1+cosx}}=\frac{2.cosx}{|sin|}\)
e)\(tan^3x+tan^2x+tanx+1=\frac{sinx+cosx}{cos^3x}\)
\(\dfrac{sinx+cosx}{sinx}=\dfrac{sinx+cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}}{2cos\dfrac{x}{2}sin\dfrac{x}{2}}\)
\(0< x< 90\), chứng minh
Trong các khẳng định sau, khẳng định nào là sai?
A. \(\left(sinx+cosx\right)^2=1+2sinxcosx\)
B. \(sin^4x+cos^4x=1-2sin^2xcos^2x\)
C. \(\left(sinx-cosx\right)^2=1-2sinxcosx\)
D. \(sin^6x+cos^6x=1-sin^2xcos^2x\)
Biết sin x + cos x = m
a) Tìm \(\left|\sin^4-\cos^4\right|\)
b) Chứng minh rằng \(\left|m\right|\)\(\le\sqrt{2}\)
chứng minh rằng với mọi góc x ( 0o ≤ x ≤ 90o), ta đều có
a) sin x = \(\sqrt{1-cos^{2_{ }}x}\)
b) cos x = \(\sqrt{1-sin^{2_{ }}x}\)
Chứng minh
\(\frac{1-cosx}{sinx}\left(\frac{\left(1-cosx\right)^2}{sinx^2}-1\right)=2cotx\)
cho sinx=3/5 (pi/2<x<pi). Tính cosx ,cos2x, sin(x-pi/4), tan x/2
CMR:
a, \(\frac{\cot^2x-\sin^2x}{\cot^2x-tan^2x}=sin^2x.\cos^2x\)
b, \(\frac{\tan x}{1-\tan^2x}.\frac{\cot^2-1}{\cot x}=1\)
c, \(\frac{1+\sin x.\cos x}{\sin^2x-\cos^2x}=\frac{\tan x+1}{\cot x+1}\)
d, \(\frac{\sin x+\cos x-1}{\sin x-cosx+1}=\frac{\cos x}{1+sinx}\)
Giải các pt
a) \(\sqrt{2}\sin\left(2x+\dfrac{\pi}{4}\right)=3\sin x+\cos x+2\)
b) \(\dfrac{\left(2-\sqrt{3}\right)\cos x-2\sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2\cos x-1}=1\)
c) \(2\sqrt{2}\cos\left(\dfrac{5\pi}{12}-x\right)\sin x=1\)
Biết \(sinx+cosx=m\).
Tính giá trị biểu thức sau theo m: \(sin^3x+cos^3x\)