\(cosx=cos2.\left(\dfrac{x}{2}\right)=cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}\)
\(sinx=sin2\left(\dfrac{x}{2}\right)=2sin\dfrac{x}{2}cos\dfrac{x}{2}\)
\(\Rightarrow\dfrac{sinx+cosx}{sinx}=\dfrac{sinx+cos^2\dfrac{x}{2}-sin^2\dfrac{x}{2}}{2sin\dfrac{x}{2}cos\dfrac{x}{2}}\)