\(\cos^2x=\sqrt{1-\dfrac{9}{25}}=\dfrac{16}{25}\)
mà \(\cos x< 0\)
nên \(\cos x=-\dfrac{4}{5}\)
=>\(\tan x=-\dfrac{3}{4};\cot x=-\dfrac{4}{3}\)
\(\cos^2x=\sqrt{1-\dfrac{9}{25}}=\dfrac{16}{25}\)
mà \(\cos x< 0\)
nên \(\cos x=-\dfrac{4}{5}\)
=>\(\tan x=-\dfrac{3}{4};\cot x=-\dfrac{4}{3}\)
Cho sinx=-0,8, với x ∈ (\(\pi\);\(\dfrac{3\pi}{2}\))
a)Tìm các giá trị lượng giác còn lại của góc x.
b)Tính giá trị của biểu thức P=2cos2x và Q = tan\(\left(2x+\dfrac{\pi}{3}\right)\)
Cho cosx=\(-\dfrac{4}{5}\)với \(\dfrac{\pi}{2}\)<x<\(\pi\).Tính các giá trị lượng giác còn lại của góc x.
Cho sin x=\(\dfrac{21}{29}\) với \(\dfrac{\pi}{2}< x< \pi\). Tính các giá trị lượng giác còn lại của góc x.
Cho \(cosa=-\dfrac{2}{5}\) và \(\pi< a< \dfrac{3\pi}{2}\)
a) Tính các giá trị lượng giác còn lại của góc a
b) Giá trị biểu thức P = cos2a - cos\(\left(\dfrac{\pi}{3}-a\right)\)
Cho cosα=\(\dfrac{1}{3}\) với 0<α<\(\dfrac{\pi}{2}\).Tính các giá trị lượng giác còn lại của góc α.
Tính giá trị biểu thức \(cos\left(x+\dfrac{\Pi}{3}\right)\) biết \(sinx=\dfrac{1}{\sqrt{3}}\left(0< x< \dfrac{\Pi}{2}\right)\)
Tính giá trị của biểu thức sau : B= \(\dfrac{tan\left(\dfrac{21\pi}{2}-x\right).cos\left(38\pi-x\right).sin\left(x-7\pi\right)}{sin\left(\dfrac{13\pi}{2}-x\right).cos\left(x-2023\pi\right)}\)
Tính giá trị của biểu thức sau: B= \(\dfrac{tan\left(\dfrac{23\pi}{2}+x\right).sin\left(2022\pi-x\right).cos\left(x-2021\pi\right)}{cos\left(\dfrac{2021\pi}{2}-x\right).sin\left(x+2023\pi\right)}\)
tính F=\(\sin^2\dfrac{\pi}{6}+\sin^2\dfrac{2\pi}{6}+...+\sin^2\dfrac{5\pi}{6}+\sin^2\pi\)
2/ biết \(\sin\beta=\dfrac{4}{5},0< \beta< \dfrac{\pi}{2}\) giá trị của biểu thúc a=\(\dfrac{\sqrt{3}\sin\left(\alpha+\beta\right)-\dfrac{4\cos\left(\alpha+\beta\right)}{\sqrt{3}}}{\sin\alpha}\)