Bài 3: Một số phương trình lượng giác thường gặp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
M Thiện Nguyễn

III. Phương trình bậc nhất đối với sinx và cosx:

*Giải các phương trình bậc nhất đối với sinx và cosx sau đây:

(2.1)

1) \(2sinx-2cosx=\sqrt{2}\)

2) \(cosx-\sqrt{3}sinx=1\)

3) \(\sqrt{3}sin\dfrac{x}{3}+cos\dfrac{x}{2}=\sqrt{2}\)

4) \(cosx-sinx=1\)

5) \(2cosx+2sinx=\sqrt{6}\)

6) \(sin3x+\sqrt{3}cosx=\sqrt{2}\)

7) \(3sinx-2cosx=2\)

(2.3)

1) \(\left(sinx-1\right)\left(1+cosx\right)=cos^2x\)

2) \(sin\left(\dfrac{\pi}{2}+2x\right)+\sqrt{3}sin\left(\pi-2x\right)=1\)

3) \(\sqrt{2}\left(cos^4x-sin^4x\right)=cosx+sinx\)

4) \(sin2x+cos2x=\sqrt{2}sin3x\)

5) \(sinx=\sqrt{2}sin5x-cosx\)

6) \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)

7) \(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)

8) \(2sin^2x+\sqrt{3}sin2x=3\)

9) \(sin^4x+cos^4\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{4}\) 

(2.3)

1) \(\dfrac{\sqrt{3}\left(1-cos2x\right)}{2sinx}=cosx\)

2) \(cotx-tanx=\dfrac{cosx-sinx}{sinx.cosx}\)

3) \(\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}=4\)

4) \(\dfrac{1+sinx}{1+cosx}=\dfrac{1}{2}\)

5) \(3cosx+4sinx+\dfrac{6}{3cosx+4sinx+1}=6\)

(2.4)

a) Tìm nghiệm \(x\in\left(\dfrac{2\pi}{5};\dfrac{6\pi}{7}\right)\) của phương trình \(cos7x-\sqrt{3}sin7x+\sqrt{2}=0\)

b) Tìm nghiệm \(x\in\left(0;\pi\right)\) của phương trình \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\dfrac{3\pi}{4}\right)\)

(2.5) Xác định tham số m để các phương trình sau đây có nghiệm:

a) \(mcosx-\left(m+1\right)sinx=m\)

b) \(\left(2m-1\right)sinx+\left(m-1\right)cosx=m-3\)

(2.6) Tìm GTLN, GTNN (nếu có) của các hàm số sau đây:

a) \(y=3sinx-4cosx+5\)

b) \(y=cos2x+sin2x-1\)

 

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:36

2.1

a.

\(\Leftrightarrow sinx-cosx=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:38

b.

\(cosx-\sqrt{3}sinx=1\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:41

c.

\(\sqrt{3}sin\dfrac{x}{3}+cos\dfrac{x}{2}=\sqrt{2}\)

Câu này đề đúng không nhỉ? Nhìn thấy có vẻ không đúng lắm

d.

\(cosx-sinx=1\)

\(\Leftrightarrow\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:42

e.

\(2cosx+2sinx=\sqrt{6}\)

\(\Leftrightarrow2\sqrt{2}cos\left(x-\dfrac{\pi}{4}\right)=\sqrt{6}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{\pi}{12}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:47

f.

\(sin3x+\sqrt{3}cosx=\sqrt{2}\)

Lại 1 câu đề không đúng

g.

\(3sinx-2cosx=2\)

\(\Leftrightarrow\dfrac{3}{\sqrt{13}}sinx-\dfrac{2}{\sqrt{13}}cosx=\dfrac{2}{\sqrt{13}}\)

Đặt \(\dfrac{3}{\sqrt{13}}=cosa\) với \(0< a< \dfrac{\pi}{2}\Rightarrow\dfrac{2}{\sqrt{13}}=sina\)

\(\Rightarrow sinx.cosa-cosx.sina=sina\)

\(\Leftrightarrow sin\left(x-a\right)=sina\)

\(\Leftrightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=\pi-a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:50

2.2

a.

\(\left(sinx-1\right)\left(1+cosx\right)=cos^2x\)

\(\Leftrightarrow\left(sinx-1\right)\left(1+cosx\right)=1-sin^2x\)

\(\Leftrightarrow\left(sinx-1\right)\left(1+cosx\right)=\left(1-sinx\right)\left(1+sinx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-1=0\\-1-cosx=1+sinx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx+cosx=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\sin\left(x+\dfrac{\pi}{4}\right)=-\sqrt{2}< -1\left(vô-nghiệm\right)\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:51

b.

\(sin\left(\dfrac{\pi}{2}+2x\right)+\sqrt{3}sin\left(\pi-2x\right)=1\)

\(\Leftrightarrow cos2x+\sqrt{3}sin2x=1\)

\(\Leftrightarrow\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k\pi\\x=k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:54

c.

\(\sqrt{2}\left(cos^4x-sin^4x\right)=cosx+sinx\)

\(\Leftrightarrow\sqrt{2}\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=cosx+sinx\)

\(\Leftrightarrow\sqrt{2}\left(cos^2x-sin^2x\right)=cosx+sinx\)

\(\Leftrightarrow\sqrt{2}\left(cosx-sinx\right)\left(cosx+sinx\right)=cosx+sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx+sinx=0\\\sqrt{2}\left(cosx-sinx\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}cos\left(x-\dfrac{\pi}{4}\right)=0\\2cos\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=0\\cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{2}+k\pi\\x+\dfrac{\pi}{4}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{4}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k2\pi\\x=-\dfrac{7\pi}{12}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:56

d.

\(sin2x+cos2x=\sqrt{2}sin3x\)

\(\Leftrightarrow\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=\sqrt{2}sin3x\)

\(\Leftrightarrow sin3x=sin\left(2x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=2x+\dfrac{\pi}{4}+k2\pi\\3x=\dfrac{3\pi}{4}-2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 17:57

e.

\(sinx=\sqrt{2}sin5x-cosx\)

\(\Leftrightarrow sinx+cosx=\sqrt{2}sin5x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}sin5x\)

\(\Leftrightarrow sin5x=sin\left(x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=x+\dfrac{\pi}{4}+k2\pi\\5x=\dfrac{3\pi}{4}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 18:00

f.

\(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)

\(\Leftrightarrow sin8x-\sqrt{3}cos8x=cos6x+\sqrt{3}sin6x\)

\(\Leftrightarrow\dfrac{1}{2}sin8x-\dfrac{\sqrt{3}}{2}cos8x=\dfrac{1}{2}cos6x+\dfrac{\sqrt{3}}{2}sin6x\)

\(\Leftrightarrow sin\left(8x-\dfrac{\pi}{3}\right)=sin\left(6x+\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\dfrac{5\pi}{6}-6x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+\dfrac{k\pi}{7}\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 18:02

g.

\(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)

\(\Leftrightarrow cos3x+\sqrt{3}sin3x=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow\dfrac{1}{2}cos3x+\dfrac{\sqrt{3}}{2}sin3x=\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx\)

\(\Leftrightarrow cos\left(3x-\dfrac{\pi}{3}\right)=cos\left(x-\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\\3x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 18:04

h.

\(2sin^2x+\sqrt{3}sin2x=3\)

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x=3\)

\(\Leftrightarrow\sqrt{3}sin2x-cos2x=2\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{6}\right)=1\)

\(\Leftrightarrow2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 18:07

i.

\(sin^4x+cos^4\left(x+\dfrac{\pi}{2}\right)=\dfrac{1}{4}\)

\(\Leftrightarrow\left(\dfrac{1-cos2x}{2}\right)^2+\left[\dfrac{1+cos\left(2x+\dfrac{\pi}{2}\right)}{2}\right]^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left(\dfrac{1-cos2x}{2}\right)^2+\left(\dfrac{1-sin2x}{2}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow1-2cos2x+cos^22x+1-2sin2x+sin^22x=1\)

\(\Leftrightarrow3-2\left(sin2x+cos2x\right)=1\)

\(\Leftrightarrow sin2x+cos2x=1\)

\(\Leftrightarrow\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\2x+\dfrac{\pi}{4}=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 18:59

2.3

a.

\(\dfrac{\sqrt{3}\left(1-cos2x\right)}{2sinx}=cosx\)

ĐKXĐ: \(x\ne k\pi\)

\(\sqrt{3}\left(1-cos2x\right)=2sinx.cosx\)

\(\Leftrightarrow\sqrt{3}-\sqrt{3}cos2x=sin2x\)

\(\Leftrightarrow sin2x+\sqrt{3}cos2x=\sqrt{3}\)

\(\Leftrightarrow\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\2x+\dfrac{\pi}{3}=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\left(loại\right)\\x=\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 19:02

b.

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(cotx-tanx=\dfrac{cosx-sinx}{sinx.cosx}\)

\(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{cosx}{sinx}=\dfrac{cosx-sinx}{sinx.cosx}\)

\(\Leftrightarrow\dfrac{sin^2x-cos^2x}{sinx.cosx}=\dfrac{cosx-sinx}{sinx.cosx}\)

\(\Rightarrow\left(sinx-cosx\right)\left(sinx+cosx\right)=-\left(sinx-cosx\right)\)

\(\Rightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx+cosx=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=-\dfrac{\pi}{2}+k2\pi\left(loại\right)\\x=\dfrac{3\pi}{2}+k2\pi\left(loại\right)\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 19:04

c.

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}=4\)

\(\Rightarrow\sqrt{3}sinx+cosx=4sinx.cosx\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=sin2x\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x+\dfrac{\pi}{6}+k2\pi\\2x=\dfrac{5\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 19:07

d.

\(\dfrac{1+sinx}{1+cosx}=\dfrac{1}{2}\)

ĐKXĐ: \(x\ne\pi+k2\pi\)

\(2\left(1+sinx\right)=1+cosx\)

\(2sinx+2=1+cosx\)

\(\Leftrightarrow cosx-2sinx=1\)

\(\Leftrightarrow\dfrac{1}{\sqrt{5}}cosx-\dfrac{2}{\sqrt{5}}sinx=\dfrac{1}{\sqrt{5}}\)

Đặt \(\dfrac{1}{\sqrt{5}}=cosa\) với \(0< a< 90^0\)

\(\Rightarrow cosx.cosa-sinx.sina=cosa\)

\(\Leftrightarrow cos\left(x+a\right)=cosa\)

\(\Leftrightarrow\left[{}\begin{matrix}x+a=a+k2\pi\\x+a=-a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-2a+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 19:11

e.

\(3cosx+4sinx+\dfrac{6}{3cosx+4sinx+1}=6\)

Đặt \(3cosx+4sinx+1=t\)

\(\Rightarrow t-1+\dfrac{6}{t}=6\)

\(\Rightarrow t^2-7t+6=0\Rightarrow\left[{}\begin{matrix}t=1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3cosx+4sinx+1=1\\3cosx+4sinx+1=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3cosx+4sinx=0\\3cosx+4sinx=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{5}cosx+\dfrac{4}{5}sinx=0\\\dfrac{3}{5}cosx+\dfrac{4}{5}sinx=1\end{matrix}\right.\)

Đặt \(\dfrac{3}{5}=cosa\) với \(0< a< \dfrac{\pi}{2}\)

\(\Rightarrow\left[{}\begin{matrix}cosx.cosa+sinx.sina=0\\cosx.cosa+sinx.sina=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-a\right)=0\\cos\left(x-a\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-a=\dfrac{\pi}{2}+k\pi\\x-a=k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a+\dfrac{\pi}{2}+k2\pi\\x=a+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 19:17

2.4

a.

\(cos7x-\sqrt{3}sin7x=-\sqrt{2}\)

\(\Leftrightarrow\dfrac{1}{2}cos7x-\dfrac{\sqrt{3}}{2}sin7x=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow cos\left(7x+\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}7x+\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\\7x+\dfrac{\pi}{3}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{84}+\dfrac{k2\pi}{7}\\x=-\dfrac{13\pi}{84}+\dfrac{k2\pi}{7}\end{matrix}\right.\)

Do \(\dfrac{2\pi}{5}< x< \dfrac{6\pi}{7}\Rightarrow\left[{}\begin{matrix}\dfrac{2\pi}{5}< \dfrac{5\pi}{84}+\dfrac{k2\pi}{7}< \dfrac{6\pi}{7}\\\dfrac{2\pi}{5}< -\dfrac{13\pi}{84}+\dfrac{k2\pi}{7}< \dfrac{6\pi}{7}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}k=2\\k=\left\{2;3\right\}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{53\pi}{84}\\x=\dfrac{5\pi}{12}\\x=\dfrac{59\pi}{84}\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 19:22

2.4

b.

\(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\dfrac{3\pi}{4}\right)\)

\(\Leftrightarrow2-2cosx-\sqrt{3}cos2x=1+1+cos\left(2x-\dfrac{3\pi}{2}\right)\)

\(\Leftrightarrow-2cosx-\sqrt{3}cos2x=-sin2x\)

\(\Leftrightarrow\sqrt{3}cos2x-sin2x=-2cosx\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cos2x-\dfrac{1}{2}sin2x=cos\left(\pi-x\right)\)

\(\Leftrightarrow cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(\pi-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\pi-x+k2\pi\\2x+\dfrac{\pi}{6}=x-\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\\x=-\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(0< x< \pi\Rightarrow x=\left\{\dfrac{5\pi}{18};\dfrac{17\pi}{18};\dfrac{5\pi}{6}\right\}\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 19:25

2.5

Theo điều kiện có nghiệm của pt lượng giác bậc nhất, các pt có nghiệm khi:

a.

\(m^2+\left(m+1\right)^2\ge m^2\)

\(\Leftrightarrow\left(m+1\right)^2\ge0\) (luôn thỏa mãn)

Vậy pt đã cho có nghiệm với mọi m

b.

\(\left(2m-1\right)^2+\left(m-1\right)^2\ge\left(m-3\right)^2\)

\(\Leftrightarrow4m^2-7\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{\sqrt{7}}{2}\\m\le-\dfrac{\sqrt{7}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 19:28

2.6

a.

\(y=5\left(\dfrac{3}{5}sinx-\dfrac{4}{5}cosx\right)+5\)

Đặt \(\dfrac{3}{5}=cosa\) với \(0< a< \dfrac{\pi}{2}\)

\(\Rightarrow y=5\left(sinx.cosa-cosx.sina\right)+5=5sin\left(x-a\right)+5\)

Do \(-1\le sin\left(x-a\right)\le1\)

\(\Rightarrow0\le y\le10\)

\(y_{min}=0\) khi \(sin\left(x-a\right)=-1\)

\(y_{max}=10\) khi \(sin\left(x-a\right)=1\)

b.

\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)-1\)

Do \(-1\le sin\left(2x+\dfrac{\pi}{4}\right)\le1\)

\(\Rightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)

\(y_{max}=\sqrt{2}-1\) khi \(sin\left(2x+\dfrac{\pi}{4}\right)=1\)

\(y_{min}=-\sqrt{2}-1\) khi \(sin\left(2x+\dfrac{\pi}{4}\right)=-1\)


Các câu hỏi tương tự
Huyen My
Xem chi tiết
Huyen My
Xem chi tiết
lu nguyễn
Xem chi tiết
xữ nữ của tôi
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Kẹo Bông Gòn
Xem chi tiết
lu nguyễn
Xem chi tiết
Nkjuiopmli Sv5
Xem chi tiết
lu nguyễn
Xem chi tiết