Bài 3: Một số phương trình lượng giác thường gặp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nkjuiopmli Sv5

giải phương trình sau:

\(\dfrac{\left(1-2sinx\right)cosx}{\left(1+2sinx\right)\left(1-sinx\right)}=\sqrt{3}\)

Nguyễn Việt Lâm
17 tháng 7 2021 lúc 22:24

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k2\pi\\x\ne-\dfrac{\pi}{6}+k2\pi\\x\ne\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\dfrac{cosx-2sinx.cosx}{1-2sin^2x+sinx}=\sqrt{3}\)

\(\Leftrightarrow\dfrac{cosx-sin2x}{cos2x+sinx}=\sqrt{3}\)

\(\Rightarrow cosx-sin2x=\sqrt{3}cos2x+\sqrt{3}sinx\)

\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(2x-\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=x+\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=-x-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\left(loại\right)\\x=-\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Khôi Bùi
17 tháng 7 2021 lúc 22:30

ĐKXĐ : \(sinx\ne1;-\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+2k\pi\\x\ne\dfrac{-\pi}{6}+2k\pi;\dfrac{7\pi}{6}+2k\pi\end{matrix}\right.\)   

\(\Leftrightarrow x\ne\dfrac{-\pi}{6}+\dfrac{2}{3}k\pi\)( k thuộc Z ) 

P/t đã cho \(\Leftrightarrow\dfrac{cosx-sin2x}{1-2sin^2x+sinx}=\sqrt{3}\) 

\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(cos2x+sinx\right)\)

\(\Leftrightarrow cosx-\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(2x+\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+\dfrac{\pi}{3}+2k\pi\\2x+\dfrac{\pi}{6}=-x-\dfrac{\pi}{3}+2k\pi\end{matrix}\right.\) ( k thuộc Z ) 

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+2k\pi\\x=\dfrac{-\pi}{6}+\dfrac{2}{3}k\pi\left(L\right)\end{matrix}\right.\)

Vậy ...


Các câu hỏi tương tự
Huyen My
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
M Thiện Nguyễn
Xem chi tiết
Nkjuiopmli Sv5
Xem chi tiết
Nguyễn Xuân Đình Lực
Xem chi tiết
lu nguyễn
Xem chi tiết
lu nguyễn
Xem chi tiết
M Thiện Nguyễn
Xem chi tiết