Tìm giá trị nhỏ nhất của biểu thức
A=(x-1)(x+2)(x+3)(x+6)+12
Mọi người giải hộ em với
Tìm giá trị nhỏ nhất của biểu thức
A = x + \(\dfrac{9}{x-1}\) + 3 với x>1
Dúp mikk với hihi
\(A=x-1+\dfrac{9}{x-1}+4\ge2\sqrt{\dfrac{9\left(x-1\right)}{x-1}}+4=10\)
\(A_{min}=10\) khi \(x=4\)
\(A=x+\frac{9}{x-1}+3\Leftrightarrow x-1+\frac{9}{x-1}+3\)
Áp dụng cosi 2 số đầu ta được :
\(x-1+\frac{9}{x-1}\ge2\sqrt{\left(x-1\right)\frac{9}{x-1}}=6\)
Dễ dàng suy ra : \(A\ge3+6=9\)
Dấu ''='' xảy ra <=> \(x-1=\frac{9}{x-1}\Leftrightarrow\left(x-1\right)^2=9\)
TH1 : \(x-1=3\Leftrightarrow x=4\)( chọn )
TH2 : \(x-1=-3\Leftrightarrow x=-2\)( bỏ vì x > 1 ) theo giả thiết
Vậy GTNN A là 9 <=> x = 4
Tìm giá trị nhỏ nhất của các biểu thức
a. A = 4x2 + 4x + 11
b. B = (x - 1) (x + 2) (x + 3) (x + 6)
c. C = x2 - 2x + y2 - 4y + 7
3. Tìm giá trị nhỏ nhất của các biểu thứca. A = 4x2 4x 11b. B = (x - 1) (x 2) (x 3) (x 6)c. C = x2 - 2x y2 - 4y 7Ai nha... - Hoc24
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức
a ) A= x2 – 2x+5
b) B= x2 –x +1
c) C= ( x -1). ( x +2). ( x+3). ( x+6)
d) D= x2 + 5y2 – 2xy+ 4y+3
Bài 2: Tìm giá trị lớn nhất của các biểu thức sau:
a) A= -x2 – 4x – 2
b) B= -2x2 – 3x +5
c) C= ( 2- x). ( x +4)
d) D= -8x2 + 4xy - y2 +3
Bài 3 : Chứng minh rằng các giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a) A= 25x – 20x+7
b) B= 9x2 – 6xy + 2y2 +1
c) E= x2 – 2x + y2 + 4y+6
d) D= x2 – 2x +2
Giúp mình nha. Cần gấp ạ <Chi tiết nha>
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Bài 1: Tìm các giá trị nhỏ nhất của các biểu thức
a)A=x^2 - 2x + 5
b)B= x^2 - x + 1
c)C=(x-1)(x+2)(x+3)(x+6)
d)D=x^2 + 5y^2 - 2xy + 4y + 3
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu '=' xảy ra khi x(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d) Ta có: \(x^2+5y^2-2xy+4y+3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)
Bài 1: Tìm giá trị nhỏ nhất của biểu thức
a, M= x2-10x+3
b, N= x2-x+2
c, P=3x2-12x
Bài 2: Tìm giá trị nhỏ nhất của biểu thức
a, M= 2x2-4x+3
b, N= x2-4x+5+y2+2y2
MONG MN GIÚP ĐỠ :3
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
bài 1 tìm giá trị nhỏ nhất của biểu thức
A= (x-3)^2+(11-x)^2
mình cần gấp 9h tối nay ạ
Ta có: \(A=\left(x-3\right)^2+\left(11-x\right)^2\)
\(=x^2-6x+9+x^2-22x+121\)
\(=2x^2-28x+130\)
\(=2\left(x^2-14x+49+16\right)\)
\(=2\left(x-7\right)^2+32\ge32\forall x\)
Dấu '=' xảy ra khi x=7
tính giá trị nhỏ nhất, lớn nhất của biểu thức
a.\(\left(x-2\right)^2\)+2023
b.\(\left(x-3\right)^2\)+\(\left(y-2\right)^2\)−2018
c.\(\left(x+1\right)^2\)+100
anh/chị làm giúp em với ạ, em đang cần gấp
a. Ta có: ( x-2)2 \(\ge\) 0 , \(\forall\) x
=> ( x-2)2 +2023 \(\ge\) 2023
Vậy ...
Dấu bằng xảy ra khi x-2 = 0
b. (x-3)2+(y-2)2-2018
Ta có: \((x-3)^2 \ge0,\forall x\)
\((y-2) ^2 \ge0,\forall y\)
=> ( x-3)2 + ( y-2)2 \(\ge\) 0
=> ( x-3)2 + ( y-2)2-2018 \(\ge\) -2018, \(\forall\) x,y
Vậy ...
Dấu bằng xảy ra khi x-3=0
y-2=0
c. ( x+1)2 +100
Ta có : ( x+1)2 \(\ge0,\forall x\)
=> ( x+1)2+100 \(\ge\) 100
Vậy ...
Dấu bằng xảy ra khi x+1=0
Tìm giá trị nhỏ nhất của biểu thức
a) \(A=\sqrt{x-2}+\sqrt{4-x}\)
b) \(y=\dfrac{4x^4-3x^2+9}{x^2},x\ne0\)
c) \(P=\dfrac{x}{4}+\dfrac{1}{x-1}\) với x>1
\(A=\sqrt{x-2}+\sqrt{4-x}\ge\sqrt{x-2+4-x}=\sqrt{2}\)
\(A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
\(y=4x^2+\dfrac{9}{x^2}-3\ge2\sqrt{\dfrac{36x^2}{x^2}}-3=9\)
\(y_{min}=9\) khi \(x^2=\dfrac{3}{2}\)
\(P=\dfrac{x-1}{4}+\dfrac{1}{x-1}+\dfrac{1}{4}\ge2\sqrt{\dfrac{x-1}{4\left(x-1\right)}}+\dfrac{1}{4}=\dfrac{5}{4}\)
\(P_{min}=\dfrac{5}{4}\) khi \(x=\dfrac{3}{2}\)
Tìm giá trị nhỏ nhất của biểu thức B = (x – 1)(x + 2)(x + 3)(x + 6)
giúp em với ạ ;-;
B=\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)=\(\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
- Đặt t=\(x^2+5x-6\)
=>B=t(t+12)=t2+12t=(t2+12t+36)-36 =(t+6)2-36≥-36
- minB=-36 ⇔ t+6=0 ⇔\(x^2+5x-6+6=0\) ⇔\(x\left(x+5\right)=0\) ⇔x=0 hay x=-5.