Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm kim liên
Xem chi tiết
9b huynh thanh truc
10 tháng 12 2021 lúc 21:50

undefinedundefinedundefined

123 nhan
Xem chi tiết
YangSu
14 tháng 8 2023 lúc 8:29

\(a,A=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{2}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\left(dk:x\ge0,x\ne4\right)\\ =\left(\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}\right)\\ =\dfrac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{x-4+10-x}\)

\(=\dfrac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\sqrt{x}-2}.\dfrac{1}{6}\\ =\dfrac{-6}{\left(\sqrt{x}-2\right).6}\\ =-\dfrac{1}{\sqrt{x}-2}\)
\(b,A>0\Leftrightarrow-\dfrac{1}{\sqrt{x}-2}>0\Leftrightarrow\sqrt{x}-2< 0\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với \(dk:x\ge0,x\ne4\), ta kết luận \(0\le x< 4\)

 

123 nhan
14 tháng 8 2023 lúc 7:44

Mình cần gấp nhớ đừng làm tắt nhé 

Kiều Vũ Linh
14 tháng 8 2023 lúc 8:32

A = [√x/(x - 4) + 2/(2 - √x) + 1/(√x + 2)] : [(√x - 2 + (10 - x)/(√x + 2)]

= [√x/(√x - 2)(√x + 2) - 2(√x + 2)/(√x - 2)(√x + 2) + (√x - 2)/(√x - 2)(√x + 2)] : [(x - 4 + 10 - x)/(√x + 2)]

= [√x - 2(√x + 2) + (√x - 2)]/[(√x - 2)(√x + 2)] : 6/(√x + 2)

= (√x - 2√x - 4 + √x - 2)/(√x - 2)(√x + 2)] . (√x + 2)/6

= -1/(√x - 2)

Để A > 0 thì -1/(√x - 2) > 0

√x - 2 < 0

√x < 2

x < 4

Vậy 0 ≤ x < 4 thì A > 0

illumina
Xem chi tiết
Akai Haruma
29 tháng 5 2023 lúc 19:29

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

hải anh thư hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 11:35

a: \(A=\left(\dfrac{\left(x-4\right)\left(\sqrt{x}+2\right)-x\sqrt{x}+8}{x-4}\right):\dfrac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8-x\sqrt{x}+8}{x-4}\cdot\dfrac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)

\(=\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{x-2\sqrt{x}+4}=\dfrac{2\sqrt{x}}{x-2\sqrt{x}+4}\)

b: \(A-1=\dfrac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}\)

\(=\dfrac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+4}=\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}< 0\)

=>A<1

c: \(2\sqrt{x}>=0;x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3>0\)

=>A>=0 với mọi x thỏa mãn  ĐKXĐ

mà A<1

nên 0<=A<1

=>Để A nguyên thì A=0

=>x=0

Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2021 lúc 23:10

a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:

\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 0:38

c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)

hay \(x\in\left\{16;25;64\right\}\)

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 5 2023 lúc 14:23

Sửa đề: x-4

\(A=\dfrac{x-2\sqrt{x}+x+4\sqrt{x}+4+2x+8}{x-4}=\dfrac{4x+2\sqrt{x}+12}{x-4}\)

NinhTuấnMinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 1 2022 lúc 23:17

a: \(M=7\sqrt{3}+7\sqrt{2}-7\sqrt{3}-6\sqrt{2}=\sqrt{2}\)

\(N=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(x-4\right)}=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b: Để N=M2 thì \(3\sqrt{x}=2\sqrt{x}+4\)

hay x=16

Lê Hương Giang
Xem chi tiết
Ngoc Anh Thai
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
12 tháng 4 2021 lúc 21:19

Bài 1. ĐKXĐ thêm x ≠ 1 nữa ạ

1) Với x = 9 tmđk, thay vào A ta được : \(A=\dfrac{2\sqrt{9}+1}{9^2}=\dfrac{7}{81}\)

2) \(B=\left[\dfrac{4x}{\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{x^2}=\dfrac{4x-1}{x^2}\)

3) Để B < A thì \(\dfrac{4x-1}{x^2}< \dfrac{2\sqrt{x}+1}{x^2}\)

<=> \(\dfrac{4x-1}{x^2}-\dfrac{2\sqrt{x}+1}{x^2}< 0\)

<=> \(\dfrac{4x-2\sqrt{x}-2}{x^2}< 0\)

Vì x2 > 0 ∀ x

=> \(4x-2\sqrt{x}-2< 0\)

<=> \(2x-\sqrt{x}-1< 0\)

<=> \(\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)< 0\)

Vì \(2\sqrt{x}+1\ge1>0\forall x\ge0\)

=> \(\sqrt{x}-1< 0\)<=> x < 1

Vậy với x < 1 thì B < A

Nguyễn Huy Tú
12 tháng 4 2021 lúc 21:24

Câu 3 : 

\(\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2x-4y+\dfrac{3}{2x+3y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2\left(x-2y\right)+\dfrac{3}{2x+3y}=3\end{matrix}\right.\)

Đặt \(x-2y=t;\dfrac{1}{2x+3y}=z\)

Hệ phương trình tương đương 

\(\left\{{}\begin{matrix}t+z=2\\2t+3z=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=2-z\left(1\right)\\2t+3z=3\left(2\right)\end{matrix}\right.\)

Thế (1) vào (2) ta được : \(2\left(2-z\right)+3z=3\Leftrightarrow4-2z+3z=3\Leftrightarrow z=-1\)

\(\Rightarrow t=2-z=3\)

hay \(\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\left(3\right)\\\dfrac{1}{2x+3y}=-1\left(4\right)\end{matrix}\right.\)

Thế (3) vào (4) ta được : \(\dfrac{1}{2\left(3+2y\right)+3y}=-1\Leftrightarrow\dfrac{1}{6+7y}=-1\Rightarrow-6-7y=1\Leftrightarrow-7y=7\Leftrightarrow y=-1\)

\(\Rightarrow x=3-2=1\)

Vậy \(\left(x;y\right)=\left(1;-1\right)\)

l҉o҉n҉g҉ d҉z҉
12 tháng 4 2021 lúc 21:26

à câu trước em xin lỗi :( thiếu 

3) Kết hợp với ĐKXĐ => Với \(0\le x< 1\)thì B < A

Câu III

2) a) Ta có : Δ = b2 - 4ac

= [ -(m-3) ]2 - 4( 2m - 11 )

= m2 - 6m + 9 - 8m + 44

= m2 - 14m + 53 = ( m - 7 )2 + 4 ≥ 4 > 0 ∀ m

hay pt luôn có hai nghiệm phân biệt với mọi m (đpcm)

b) Theo hệ thức Viète ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m-3\\x_1x_2=\dfrac{c}{a}=2m-11\end{matrix}\right.\)

Theo định lí Pythagoras ta có :

(CGV1)2 + (CGV2)2 = CH2

<=> x12 + x22 = 42

<=> ( x1 + x2 )2 - 2x1x2 - 16 = 0

<=> ( m - 3 )2 - 2( 2m - 11 ) - 16 = 0

<=> m2 - 6m + 9 - 4m + 22 - 16 = 0

<=> m2 - 10m + 15 = 0 

Δ' = b'2 - ac = 25 - 15 = 0

Δ' > 0, áp dụng công thức nghiệm => m = 5 ± √10

Vậy với m = 5 ± √10 thì thỏa mãn đề bài