giải bất pt
a)\(\dfrac{1-2x}{4}-1< \dfrac{1-6x}{8}\)
b)\(\dfrac{x-1}{3}-2x>\dfrac{3x+1}{2}\)
giải bất pt
a.\(\dfrac{1-2x}{4}-2< \dfrac{1-6x}{8}\)
b.\(\dfrac{x-1}{3}-2x>\dfrac{3x+1}{2}\)
giải bất pt
a)\(\dfrac{1-2x}{4}-1< \dfrac{1-6x}{8}\)
b)\(\dfrac{x-1}{3}-2x>\dfrac{3x+1}{2}\)
1.giải pt
a)\(\dfrac{16-x}{4}=\dfrac{2x+1}{3}\)
b)(2x+3)(1-3x)=9x\(^2\)-1
c)\(\dfrac{2x}{x+1}+\dfrac{x-1}{x}=\dfrac{2x^2+3x-1}{x^2+x}\)
a>16-x/4=2x+1/3
<=>3[16-x)=4(2x+1)
<=>48-3x=8x+8
<=>-3x-8x=8-48
<=>-5x=-40
<=>x=8
giải pt
a.\(\dfrac{x+5}{3\left(x-1\right)}+1=\dfrac{3x+7}{5\left(x-1\right)}\)
b.\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}-\dfrac{8}{x^2+2x-3}=1\)
a) \(\dfrac{x+5}{3\left(x-1\right)}+1=\dfrac{3x+7}{5\left(x-1\right)}\) ( đk: \(x\ne1\))
\(\Leftrightarrow\dfrac{5\left(x+5\right)}{15\left(x-1\right)}+\dfrac{15\left(x-1\right)}{15\left(x-1\right)}=\dfrac{3\left(3x+7\right)}{15\left(x-1\right)}\)
\(\Rightarrow5\left(x+5\right)+15\left(x-1\right)=3\left(3x+7\right)\)
\(\Leftrightarrow5x+25+15x-15=9x+21\)
\(\Leftrightarrow5x+15x-9x=21-25+15\)
\(\Leftrightarrow11x=11\Leftrightarrow x=1\) (loại)
Vậy tập nghiệm: \(S=\varnothing\)
b) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}-\dfrac{8}{x^2+2x-3}=1\) (đk: \(x\ne1,x\ne-3\))
\(\Leftrightarrow\dfrac{\left(3x-1\right)\left(x+3\right)}{x^2+2x-3}-\dfrac{\left(2x+5\right)\left(x-1\right)}{x^2+2x-3}-\dfrac{8}{x^2+2x-3}=\dfrac{x^2+2x-3}{x^2+2x-3}\)
\(\Rightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)-8=x^2+2x-3\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5-8=x^2+2x-3\)
\(\Leftrightarrow3x=3\Leftrightarrow x=1\) (loại)
Vậy tập nghiệm: \(S=\varnothing\)
Giải các phương trình sau:
\(e.\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(f.\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
\(g.\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)
\(h.\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)
\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)
\(\Leftrightarrow x=-1\left(TM\right)\)
câu 1: (x-2)(x2+2x+4)+25x=x(x+5)(x-5)+8
câu 2: \(\dfrac{x+5}{4}\)+\(\dfrac{3+2x}{3}\)=\(\dfrac{6x-1}{3}\)-\(\dfrac{1-2x}{12}\)
câu 3:\(\dfrac{x-4}{3}\)-\(\dfrac{3x-1}{12}\)=\(\dfrac{3x+1}{4}\)+\(\dfrac{9x-2}{8}\)
Giúp mình với ai làm mà có lời giải rõ á là mình tym nha làm ơn
Câu 1:
\(\left(x-2\right)\left(x^2+2x+4\right)+25x=x\left(x+5\right)\left(x-5\right)+8\)
\(\Leftrightarrow x^3-8+25x=x\left(x^2-25\right)+8\)
\(\Leftrightarrow x^3-8+25x=x^3-25x+8\)
\(\Leftrightarrow x^3-8+25x-x^3+25x-8=0\)
\(\Leftrightarrow50x-16=0\)
\(\Leftrightarrow50x=16\)
\(\Leftrightarrow x=\dfrac{8}{25}\)
Câu 2 :
\(\dfrac{x+5}{4}+\dfrac{3+2x}{3}=\dfrac{6x-1}{3}-\dfrac{1-2x}{12}\)
<=> \(\dfrac{3\left(x+5\right)}{12}+\dfrac{4\left(3+2x\right)}{12}=\dfrac{4\left(6x-1\right)}{12}-\dfrac{1-2x}{12}\)
<=>\(\dfrac{3x+15+12+8x}{12}=\dfrac{24x-4-1+2x}{12}\)
<=> 3x + 15 + 12 + 8x = 24x - 4 - 1 +2x
<=> 11x+27 = 26x -5
<=> ( 26x - 5 ) - ( 11x + 27 ) = 0
<=> 15x - 32 = 0
<=> 15x = 32
<=> x = \(\dfrac{32}{15}\)
Câu 3:
x - 4/3 - 3x - 1/12 = 3x + 1/4 + 9x - 2/8
<=> 4x - 16 - 3x + 1/12 = 6x + 2 + 9x - 2/8
<=> x - 15/12 = 15x/8
<=> 8x - 120 = 180x
<=> 120 = -172x <=> x = -172/120 = -43/30
Giai pt
a/\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\)
b/\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
a: \(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)
Suy ra: \(x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\)
=>x(x+1)=0
=>x=0(loại) hoặc x=-1(nhận)
b: \(\Leftrightarrow x^2+x+1-3x^2=2x\left(x-1\right)\)
\(\Leftrightarrow-2x^2+x+1-2x^2+2x=0\)
\(\Leftrightarrow-4x^2+3x+1=0\)
\(\Leftrightarrow4x^2-3x-1=0\)
\(\Leftrightarrow4x^2-4x+x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)
=>x=1(loại) hoặc x=-1/4(nhận)
Thực hiện phép tính:
a) \(\dfrac{x}{2x-y}-\dfrac{2x-y}{4x-2y}\)
b)\(\dfrac{3x+1}{x^2-1}-\dfrac{x}{2x-2}\)
c) \(\dfrac{x-2}{x^2-4}-\dfrac{-8-x}{3x^2+6x}\)
d) \(\dfrac{2}{2x-3}-\dfrac{x}{2x+3}-\dfrac{2x+1}{9-4x^2}\)
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
Tập nghiệm của bất pt
a) \(\left|3x+1\right|>2\)
b) \(\left|2x-1\right|\le1\)
c) \(\left|\dfrac{2}{x-13}\right|>\dfrac{8}{9}\). Số nghiệm nguyên nhỏ hơn 13 của bất pt
d) \(\dfrac{\left|x+2\right|-x}{x}\le2\)
a, \(\left|3x+1\right|>2\)
\(\Leftrightarrow\left(\left|3x+1\right|\right)^2>4\)
\(\Leftrightarrow9x^2+6x+1>4\)
\(\Leftrightarrow9x^2+6x-3>0\)
\(\Leftrightarrow3\left(3x-1\right)\left(x+1\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{3}\\x< -1\end{matrix}\right.\)
b, \(\left|2x-1\right|\le1\)
\(\Leftrightarrow\left(\left|2x-1\right|\right)^2\le1\)
\(\Leftrightarrow4x^2-4x+1\le1\)
\(\Leftrightarrow4x\left(x-1\right)\le0\)
\(\Leftrightarrow0\le x\le1\)
c, ĐK: \(x\ne13\)
\(\left|\dfrac{2}{x-13}\right|>\dfrac{8}{9}\)
\(\Leftrightarrow\dfrac{1}{\left|x-13\right|}>\dfrac{4}{9}\)
\(\Leftrightarrow4\left|x-13\right|< 9\)
\(\Leftrightarrow16\left(x^2-26x+169\right)< 81\)
\(\Leftrightarrow16x^2-416x+2623< 0\)
\(\Leftrightarrow\dfrac{43}{4}< x< \dfrac{61}{4}\)
\(\Rightarrow\) Có hai giả trị thỏa mãn yêu cầu bài toán