Giải dùm tui từ câu 36-40 với ạ
Giải dùm tui bài 3 với câu c tui cần lời giải chi tiết nha!! Tym ai giúp cho tui nek ×^=
Câu 3:
a: Xét ΔABC có AB<BC
nên \(\widehat{ACB}< \widehat{BAC}\)
b: Xét ΔABM có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABM cân tại A
mà \(\widehat{B}=60^0\)
nên ΔABM đều
Giải dùm mình câu 36, 37 với 39
mọi người giải giúp mình từ bài 36 đến 40 với ạ
Giải dùm em câu 2 với câu 3 đi ạ
2)
Đổi 1h15 phút thành 1,25 h
Thời gian dự định là: $\frac{AB}{40}$ (h)
Thời gian thực tế: $\frac{AB}{40-15}=\frac{AB}{25}$ (h)
Chênh lệch thời gian dự định và thời gian thực tế là:
$\frac{AB}{25}-\frac{AB}{40}=1,25$
$\frac{3AB}{200}=1,25\Rightarrow AB=83,33$ (km)
Câu 3:
Đổi 20 phút thành $\frac{1}{3}$ giờ
Giả sử sau khi ô tô đi được $a$ giờ thì hai xe gặp nhau tại $C$. Lúc này, xe máy đã đi được $a+\frac{1}{3}$ giờ
Ta có:
$AC=35(a+\frac{1}{3})=(35+20).a$
$\Leftrightarrow 35(a+\frac{1}{3})=55a$
$\Rightarrow a=\frac{7}{12}$ (h)
Đổi $\frac{7}{12}$ h = 35 phút. Vậy sau khi đi được 35 phút thì ô tô gặp xe máy.
Giải dùm mình câu này với ạ
`(1+2cosx)(3-cosx)=0`
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\dfrac{1}{2}\\cosx=3\left(L\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\pi}{3}+k2\pi\\x=\dfrac{-2\pi}{3}+k2\pi\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{2\pi}{3}+k\pi\)
`(k \in ZZ)`
\(\Leftrightarrow\left[{}\begin{matrix}1+2\cos x=0\\3-\cos x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\cos x=-\dfrac{1}{2}\\\cos x=3\end{matrix}\right.\)
Mà \(-1\le\cos x\le1\)
\(\Rightarrow\cos x=-\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\pi+k2\pi\\x=\dfrac{4}{3}\pi+k2\pi\end{matrix}\right.\)
Vậy ...
Giải dùm em câu này với ạ
Gọi G là trọng tâm tam giác ABC
\(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}=\overrightarrow{0}\Leftrightarrow\overrightarrow{A'G}+\overrightarrow{GA}+\overrightarrow{B'G}+\overrightarrow{GB}+\overrightarrow{C'G}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=\overrightarrow{0}\)
Goi G la trong tam tam giac A'B'C'
Lai co: \(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}=\overrightarrow{0}\)
\(\Rightarrow G'\equiv G\Rightarrow G'=\left(1;0;-2\right)\)
Giải dùm em câu 3.21 với ạ
giải dùm e câu cuối với ạ
Áp dụng BĐT Cô-si:
\(\dfrac{x^2}{x+1}+\dfrac{x+1}{9}\ge2\sqrt{\dfrac{x^2\left(x+1\right)}{9\left(x+1\right)}}=\dfrac{2}{3}x\)
\(\dfrac{y^2}{y+1}+\dfrac{y+1}{9}\ge2\sqrt{\dfrac{y^2\left(y+1\right)}{9\left(y+1\right)}}=\dfrac{2}{3}y\)
Cộng vế:
\(\dfrac{x^2}{x+1}+\dfrac{y^2}{y+1}+\dfrac{x+y+2}{9}\ge\dfrac{2}{3}\left(x+y\right)\)
\(\Leftrightarrow P+\dfrac{1+2}{9}\ge\dfrac{2}{3}.1\)
\(\Rightarrow P\ge\dfrac{1}{3}\)
\(P_{min}=\dfrac{1}{3}\) khi \(x=y=\dfrac{1}{2}\)
giải dùm e câu cuối với ạ
Áp dụng BĐT Cô-si:
\(3\left(a^2+4\right)\ge3.4a=12a\)
\(b^4+b^4+b^4+81\ge4\sqrt[4]{81b^{12}}=12b^3\)
Cộng vế:
\(3\left(a^2+b^4\right)+93\ge12\left(a+b^3\right)=384\)
\(\Rightarrow a^2+b^4\ge85\)
\(\Rightarrow P\ge85-19=66\)
\(P_{min}=66\) khi \(\left(a;b\right)=\left(2;3\right)\)
Giải dùm câu ba với ạ, đang cần gấp, cảm ơn ạ