320:x=2x2
x(x - 4) = 320
<=>x2 - 4x - 320 = 0
\(x^2-4x-320=0\)
\(\Leftrightarrow x^2-20x+16x-320=0\)
\(\Leftrightarrow x\cdot\left(x-20\right)+16\left(x-20\right)=0\)
\(\Leftrightarrow\left(x-20\right)\left(x+16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-20=0\\x+16=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-16\end{matrix}\right.\)
Kết quả rút gọn biểu thức (x + 2)(x + 3) + (x – 1)2
A.2x2 + 4x + 7.
B.2x2 + 3x + 6.
C.2x2 + 4x + 6.
D.2x2 + 3x + 7.
Bài 1:
a) Tìm x, biết: 3.(x - 1) - (x + 1) = - 1
b) Tìm nghiệm của đa thức: f(x) = 2x2 - x
Bài 2:
Cho đa thức f(x) = 2x2 - 3x + x + 1 ; g(x) = 3x - 3x3 + 2x2 - 2 ;
h(x) = 2x2 + 1
a) Tính g(x) - f(x) + h(x)
b)Tính f(- 1) - h(1/2)
c) Với giá trị nào của x thì f(x) = h(x)
Bài 3:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M là trung điểm của AD. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia Ax song song với BC. Trên Ax lấy điểm E sao cho AE = DC
a) Chứng minh tam giác ADC = tam giác DAE
b) Chứng minh tam giác ABD là tam giác cân
c) Gọi I là giao điểm của DE và AH ; K là giao điểm của DE và AB. Chứng minh 3 điểm B, I, M thẳng hàng ?
ĐANG CẦN GẤP ! MONG MỌI NGƯỜI GIÚP ĐỠ ! CẢM ƠN RẤT NHIỀU !
Câu 7. Sắp xếp các hạng tử của đa thức
dần của biến.
P(x) = 10 - 4x4 + 3x3 - 2x2 + x
theo lũy thừa giảm
A. P(x) = 10 + x - 2x2 + 3x3 - 4x4 . B.
C. P(x) = -4x4 - 2x2 + 3x3 + x +10 . D.
P(x) = -4x4 + 3x3 - 2x2 + x +10 .
P(x) = 3x3 + x +10 - 2x2 - 4x4 .
Câu 8. Sắp xếp các hạng tử của đa thức
tăng dần của biến.
P(x) = 3x2 -10 + 2x3 + 4x + x4
theo lũy thừa
A. P(x) = -10 + x4 + 2x3 + 3x2 . B.
C. P(x) = -10 + 4x + 3x2 + 2x3 + x4 . D.
P(x) = x4 + 2x3 + 3x2 + 4x -10 .
P(x) = x4 + 3x2 + 2x3 + 4x -10 .
Câu 9. Bậc của đơn thức 3y2 (2y2 )3 y là
A. 6 . B. 7 . C. 8 . D. 9 .
Câu 10. Hệ số cao nhất của
P(x) = x4 + 3x2 + 2x3 + 4x -10 là
A. 1 . B. 3 . C. 4 . D.
-10 .
Câu 11. Thu gọn đa thức x3 - 5y2 + x + x3 - y2 - x ta được
A. x6 - 6y4 . B.
x6 - 4y4 . C.
2x3 - 6y2 . D. 2x3 - 4y2 .
Câu 7. Sắp xếp các hạng tử của đa thức
giảm dần của biến.
P(x) = 10 - 4x4 + 3x3 - 2x2 + x
theo lũy thừa giảm
A. P(x) = 10 + x - 2x2 + 3x3 - 4x4 . B.
C. P(x) = -4x4 - 2x2 + 3x3 + x +10 . D.
P(x) = -4x4 + 3x3 - 2x2 + x +10 .
P(x) = 3x3 + x +10 - 2x2 - 4x4 .
Câu 8. Sắp xếp các hạng tử của đa thức
tăng dần của biến.
P(x) = 3x2 -10 + 2x3 + 4x + x4
theo lũy thừa
A. P(x) = -10 + x4 + 2x3 + 3x2 . B.
C. P(x) = -10 + 4x + 3x2 + 2x3 + x4 . D.
P(x) = x4 + 2x3 + 3x2 + 4x -10 .
P(x) = x4 + 3x2 + 2x3 + 4x -10 .
Câu 9. Bậc của đơn thức 3y2 (2y2 )3 y là
A. 6 . B. 7 . C. 8 . D. 9 .
Câu 10. Hệ số cao nhất của
P(x) = x4 + 3x2 + 2x3 + 4x -10 là
A. 1 . B. 3 . C. 4 . D.
-10 .
Câu 11. Thu gọn đa thức x3 - 5y2 + x + x3 - y2 - x ta được
A. x6 - 6y4 . B.
x6 - 4y4 . C.
2x3 - 6y2 . D. 2x3 - 4y2 .
Câu 11. Số tự nhiên x thỏa mãn là
A. 1 B. 0 C. 0;1 D. Một kết quả khác
Câu 12. Kết quả so sánh 320 và 230 là
A.320 > 230. B.320 > 230. C.320 = 230. D.320 ≤ 230.
Tìm nghiệm của đa thức:
H(x)=2x2+x
I(x)=4x3-x
M(x)=x3+2x2
cho H(x)=0
\(=>2x^2+x=0\)
\(=>x\left(2x+1\right)=0=>\left[{}\begin{matrix}x=0\\2x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
I(x)=0
\(=>4x^3-x=0=>4.x.x.x-x=0\)
\(=>x\left(4x^2-1\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\4x^2-1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x^2=\dfrac{1}{4}\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
cho M(x)=0
\(=>x^3+2x^2=0\)
\(=>x^2\left(x+2\right)=0\)
\(=>\left[{}\begin{matrix}x^2=0\\x+2=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Giải các phương trình sau: x + 2 x 2 - 3 x + 5 = x + 2 x 2
(x + 2)( x 2 – 3x + 5) = (x + 2) x 2
⇔ (x + 2)( x 2 – 3x + 5) – (x + 2) x 2 = 0
⇔ (x + 2)[( x 2 – 3x + 5) – x 2 ] = 0
⇔ (x + 2)( x 2 – 3x + 5 – x 2 ) = 0
⇔ (x + 2)(5 – 3x) = 0
⇔ x + 2 = 0 hoặc 5 – 3x = 0
x + 2 = 0 ⇔ x = -2
5 – 3x = 0 ⇔ x = 5/3
Vậy phương trình có nghiệm x = -2 hoặc x = 5/3
Kết quả của phép tính ( x2 – 5x)(x + 3 ) là :
A. x3 – 2x2 – 15x
B. x3 + 2x2 + 15x
C. x3 + 2x2 – 15x
D. x3 – 2x2 + 15x
>, <, =
a) 120 x 40 ………. 120 : 40
b) 280 + 70 ……….. 280 x 70
c) 320 – 80 ……… 320 : 80
d) 610 + 0 ………. 610 – 0
a) 120 x 40 > 120 : 40
b) 280 + 70 < 280 x 70
c) 320 – 80 > 320 : 80
d) 610 + 0 = 610 – 0